PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Preparation, characterization, and photocatalytic performance of atmospheric plasma-sprayed TiO2/Al2O3 coatings on glass substrates

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Conventional methods for wastewater treatment are not always efficient in persistent organic pollutant degradation processes. Therefore, low-cost and effective methods of their removal from sewage are constantly sought. This study presents an attempt to fabricate thermally sprayed ceramic coatings on glass and their characterization. Granulation of TiO2, Al2O3, and their blends in different mass ratios was done. Assessment of actual density and specific surface area was performed, and TiO2, Al2O3, and TiO2/Al2O3 were then used as a coating material for the deposition on glass substrates in atmospheric plasma spraying. Surface analysis of coatings was done by evaluating their roughness and wettability. Both powder and coatings samples were characterized using the X-ray diffraction method and scanning electron microscopy. The photocatalytic activity was estimated in the Eosin Y degradation process under UV light. UV–Vis spectroscopy was applied to observe the changes in the dye concentration. Additional tests for color measurements before and after photodegradation were carried out using a sphere spectrophotometer in CIELab color space. Particle size distribution was examined for the powder samples after the granulation and d50 was stated at 48.42–63.28 µm. Characterization of coatings via roughness measurements showed the average roughness of a surface equal to 4.90–9.65 µm. Moreover, most of the coatings appeared to be hydrophobic with water contact angles between 100° and 130°. All of the coatings showed Eosin Y degradation ability and the highest efficiency was reached for 100T/C, A75T/C, and A50T/C samples and stated at 71%, 62%, and 51%, respectively.
Rocznik
Strony
art. no. e142, 2024
Opis fizyczny
Bibliogr. 59 poz., rys., tab., wykr.
Twórcy
autor
  • Łukasiewicz Research Network-Institute of Non-Ferrous Metals, Sowińskiego 5 St., 44-100, Gliwice, Poland
  • Doctoral School, Silesian University of Technology, Akademicka 2A St., 44-100, Gliwice, Poland
  • Łukasiewicz Research Network-Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55 St., 87-100, Toruń, Poland
  • Doctoral School, Silesian University of Technology, Akademicka 2A St., 44-100, Gliwice, Poland
  • Łukasiewicz Research Network-Institute of Non-Ferrous Metals, Sowińskiego 5 St., 44-100, Gliwice, Poland
autor
  • Łukasiewicz Research Network-Institute of Non-Ferrous Metals, Sowińskiego 5 St., 44-100, Gliwice, Poland
  • Łukasiewicz Research Network-Institute of Non-Ferrous Metals, Sowińskiego 5 St., 44-100, Gliwice, Poland
  • Łukasiewicz Research Network-Institute of Non-Ferrous Metals, Sowińskiego 5 St., 44-100, Gliwice, Poland
Bibliografia
  • 1. Tkaczyk A, Mitrowska K, Posyniak A. Synthetic organic dyes ascontaminants of the aquatic environment and their implications for ecosystems: a review. Sci Total Environ. 2020. https://doi.org/10.1016/j.scitotenv.2020.137222.
  • 2. Dyes & pigments market size, share & trends analysis report by product (pigments, dyes), by application (paints & coatings, printing inks, textiles), By Region (APAC, Europe), And Segment Forecasts. 2021.
  • 3. Shindhal T, Rakholiya P, Varjani S, Pandey A, Ngo HH, Guo W, Yong Ng H, Taherzadeh MJA. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered. 2021. https://doi.org/10.1080/21655979.2020.1863034.
  • 4. Mossavi E, Hosseini SM, Ghaedi M, Azqhandi MHA. Adsorption of the azo dyes from wastewater media by a renewable nano-composite based on the graphene sheets and hydroxyapatite/Zn Onanoparticles. J Mol Liq. 2022. https://doi.org/10.1016/j.molliq.2022.118568.
  • 5. Nascimento COC, Veit MT, Palácio SM, Gonçalves GC, Fagun-des-Klen MR. Combined application of coagulation/flocculation/sedimentation and membrane separation for the treatment of laundry wastewater. Int J Chem Eng. 2019. https://doi.org/10.1155/2019/8324710.
  • 6. Li J, Gong JL, Zeng GM, Zhang P, Song B, Cao WC, Liu HY, Huan SY. Zirconium-based metal organic frameworks loaded on polyurethane foam membrane for simultaneous removal of dyes with different charges. J Colloid Interface Sci. 2018. https://doi.org/10.1016/j.jcis.2018.05.028.
  • 7. Shen L, Jin Z, Xu W, Jiang X, Shen YX, Wang Y, Lu Y. Enhanced treatment of anionic and cationic dyes in wastewater through live bacteria encapsulation using graphene hydrogel. Ind Eng Chem Res. 2019. https://doi.org/10.1021/acs.iecr.9b01950.
  • 8. Alam R, Ardiati FC, Solihat NN, Alam MB, Lee SH, Yanto DHY, Watanabe T, Kim S. Biodegradation and metabolic pathway of anthraquinone dyes by Trametes hirsuta D7 immobilized in lightexpanded clay aggregate and cytotoxicity assessment. J Hazard Mater. 2021. https://doi.org/10.1016/j.jhazmat.2020.124176.
  • 9. Liu X, Chen Z, Du W, Liu P, Zhang L, Shi F. Treatment of waste-water containing methyl orange dye by fluidized three dimensional electrochemical oxidation process integrated with chemical oxidation and adsorption. J Environ Manag. 2022. https://doi.org/10.1016/j.jenvman.2022.114775.
  • 10. Rajendrachari S, Taslimi P, Karaoglanli AC, Uzun O, Alp E, Jayaprakash GK. Photocatalytic degradation of Rhodamine B(RhB) dye in waste water and enzymatic inhibition study using cauliflower shaped ZnO nanoparticles synthesized by a novel One-pot green synthesis method. Arab J Chem. 2021. https://doi.org/10.1016/j.arabjc.2021.103180.
  • 11. Saeed M, Muneer M, Haq A, Akram N. Photocatalysis: an effective tool for photodegradation of dyes—a review. Environ Sci Pollut Res. 2022. https://doi.org/10.1007/s11356-021-16389-7.
  • 12. Kumari A, Chaudhary DR. Engineered microbes and evolving plastic bioremediation technology. Bioremediat Pollut. 2020.https://doi.org/10.1016/B978-0-12-819025-8.00021-1.
  • 13. Thandu M, Comuzzi C, Goi D. Phototreatment of water by organic photosensitizers and comparison with inorganic semiconductors. Int J Photoenergy. 2015. https://doi. org/ 10. 1155/2015/521367.
  • 14. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ. 2012. https://doi.org/10.1016/j.apcatb.2012.05.036.
  • 15. Zhang J, Xu Q, Feng Z, Li M, Li C. Importance of the relation-ship between surface phases and photocatalytic activity of TiO 2 .Angew Chem. 2008. https://doi.org/10.1002/ange.200704788.
  • 16. Zhang J, Zhou P, Liu J, Yu J. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys Chem Chem Phys. 2014. https:// doi. org/ 10. 1039/ C4CP02201G.
  • 17. Hanaor DAH, Sorrell CC. Review of the anatase to rutile phase transformation. J Mater Sci. 2015. https://doi.org/10.1524/zkri.1972.136.16.273.
  • 18. Klyatskina E, Rayón E, Darut G, Salvador MD, Sánchez E, Montavon G. A study of the influence of TiO 2 addition in Al 2O3 coatings sprayed by suspension plasma spray. Surf Coat Technol.2015. https://doi.org/10.1016/j.surfcoat.2015.07.029.
  • 19. Khaskhoussi A, Calabrese L, Bouaziz J, Proverbio E. Performances and aging stability of new Al 2 O 3 –ZrO 2 –TiO 2 ternary ceramic composites. Mater Chem Phys. 2020. https://doi.org/10.1016/j.matchemphys.2019.122586.
  • 20. Yoo SM, Lee SY, Kim G, Hernandez EV, Mora-Sero I, Yoon SJ, Shin T, Lee SH, Ahn S, Song MK, Kim M, Lee HJ. Preparation of nanoscale in organic CsPbIxBr 3–x perovskite photosensitizerson the surface of mesoporous TiO 2 film for solid-state sensitized solar cells. Appl Surf Sci. 2021. https://doi.org/10.1016/j.apsusc.2021.149387.
  • 21. Gibas A, Baszczuk A, Jasiorski M, Winnicki M, Ociński D. Preparation of visible-light active oxygen-rich TiO 2 coatings using lowpressure cold spraying. Coatings. 2022. https://doi.org/10.3390/coatings12040475.
  • 22. Chebanenko MI, Lebedev LA, Ugolkov VL, Prasolov ND, Nevedomskiy VN. Chemical and structural changes of g-C 3N4 through oxidative physical vapor deposition. Appl Surf Sci. 2022. https://doi.org/10.1016/j.apsusc.2022.154079.
  • 23. Ehsan MA, Naeem R, McKee V, Rehman A, Hakeem AS, Mazhar M. Fabrication of photoactive CaTiO 3 –TiO 2 composite thin film electrodes via facile single step aerosol assisted chemical vapor deposition route. J Mater Sci Mater Electron. 2019. https://doi.org/10.1007/s10854-018-0411-4.
  • 24. Roata IC, Croitoru C, Pascu A, Stanciu EM. Photocatalytic coatings via thermal spraying: a mini-review. AIMS Mater Sci. 2019.https://doi.org/10.3934/matersci.2019.3.335.
  • 25. Toma FL, Alamri S, Leupolt B, Kunze T, Barbosa M. Functionalization of suspension sprayed HVOF TiO 2 coatings by direct laser interference patterning. J Therm Spray Technol. 2021. https://doi.org/10.1007/s11666-021-01181-3.
  • 26. Bozorgtabar M, Rahimipour M, Salehi M, Jafarpour M. Structure and photocatalytic activity of TiO 2 coatings deposited by atmospheric plasma spraying. Surf Coat Technol. 2011. https://doi.org/10.1016/j.surfcoat.2011.03.045.
  • 27. Khatibnezhad H, Ambriz-Vargas F, Ben EF, Moreau C. An investigation on the photocatalytic activity of sub-stoichiometric TiO 2−xcoatings produced by suspension plasma spray. J Eur Ceram.2021. https://doi.org/10.1016/j.jeurceramsoc.2020.08.017.
  • 28. Ozkan E, Allan E, Parkin IP. White-light-activated antibacterial surfaces generated by synergy between zinc oxide nanoparticles and crystal violet. ACS Omega. 2018. https://doi.org/10.1021/acsomega.7b01473.
  • 29. Deshmukh SP, Koli VB, Dhodamani AG, Patil SM, Ghodake VS, Delekar SD. Ultrasonochemically modified Ag@TiO2 nanocomposites as potent antibacterial agent in the paint formulation for surface disinfection. Chemistry Select. 2021. https://doi.org/10.1002/slct.202002903.
  • 30. Akarsu E, Uslu R. Light-activated hybrid organic/inorganic anti-microbial coatings. J Sol-Gel Sci Technol. 2018. https://doi.org/10.1007/s10971-018-4714-y.
  • 31. Zhai W, Bai L, Zhou R, Fan X, Kang G, Liu Y, Zhou K. Recent progress on wear-resistant materials: designs, properties, and applications. Adv Sci. 2021. https://doi.org/10.1002/advs.202003739.
  • 32. Musalek R, Tesar T, Dudik J, Medricky J, Cech J, Lukac F. Cohesion of dissimilar splats in hybrid plasma-sprayed coatings: a case study for Al 2 O 3 -TiO 2 . J Therm Spray Technol. 2022.https://doi.org/10.1007/s11666-022-01401-4.
  • 33. Pawlowski L. Finely grained nanometric and submicrometric coatings by thermal spraying: a review Surf. Coat Technol. 2008. https://doi.org/10.1016/j.surfcoat.2008.04.004.
  • 34. Vicent M, Sánchez E, Mallol G, Moreno R. Study of colloidal behaviour and rheology of Al 2 O 3 –TiO 2 nanosuspensions to obtain free-flowing spray-dried granules for atmospheric plasma spraying. Ceram Int. 2013. https://doi.org/10.1016/j.ceramint.2013.03.083.
  • 35. Fernandes MacHado NRC, Santana VS. Influence of thermal treatment on the structure and photocatalytic activity of TiO 2P25. Catal Today. 2005. https://doi.org/10.1016/j.cattod.2005.07.022.
  • 36. Utu ID, Marginean G, Hulka I, Serban VA, Cristea D. Properties of the thermally sprayed Al 2 O 3 -TiO 2 coatings deposited on titanium substrate. Int J Refract Met Hard Mater. 2015. https://doi.org/10.1016/j.ijrmhm.2015.03.009.
  • 37. Michalak M, Toma FL, Latka L, Sokołowski P, Barbosa M, Ambroziak A. A study on the microstructural characterization and water-based suspensions. Materials. 2020. https://doi.org/10.3390/ma13112638.
  • 38. Azarniya A, Soltaninejad M, Zekavat M, Bakhshandeh F, Hosseini HRM, Amutha C, Ramakrishna S. Application of nanostructured aluminium titanate (Al2TiO5) photocatalyst for removal of organicpollutants from water: influencing factors and kinetic study. Mater Chem Phys. 2020. https://doi.org/10.1016/j.matchemphys.2020.123740.
  • 39. Yang C, Tartaglino U, Persson BNJ. Influence of surface roughness on superhydrophobicity. Phys Rev Lett. 2006. https://doi.org/10.1103/PhysRevLett.97.116103.
  • 40. Wang J, Wu Y, Cao Y, Li G, Liao Y. Influence of surface roughness on contact angle hysteresis and spreading work. Colloid Polym Sci. 2020. https://doi.org/10.1007/s00396-020-04680-x.
  • 41. Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem Res. 1936. https://doi.org/10.1021/ie50320a024.
  • 42. Cassie ABD, Baxter S. Wettability of porous surfaces. Trans Faraday Soc. 1944. https://doi.org/10.1039/TF9444000546.
  • 43. Hosseini ZS, Haghparast F, Masoudi AA, Mortezaali A. Enhanced visible photocatalytic performance of un-doped TiO 2 nanoparticles thin films through modifying the substrate surface roughness. Mater Chem Phys. 2022. https://doi.org/10.1016/j.matchemphys.2021.125530.
  • 44. Upadhaya D, Kumar TP, Purkayastha DD. Tuning the wettability and photocatalytic efficiency of heterostructure ZnOSnO 2 composite films with annealing temperature. Mater Sci Semicond.2019. https://doi.org/10.1016/j.mssp.2019.02.009.
  • 45. Nosaka Y, Nosaka AY. Generation and detection of reactive oxygen species in photocatalysis. Chem Rev. 2017. https://doi.org/10.1021/acs.chemrev.7b00161.
  • 46. Yan S, Pan Y, Wang L, Liu J, Zhang Z, Huo W, Yang J, Huang Y. Synthesis of low-cost porous ceramic microspheres from wastegangue for dye adsorption. J Adv Ceram. 2017. https://doi.org/10.1007/s40145-017-0253-1.
  • 47. Guo N, Liang Y, Lan S, Liu L, Ji G, Gan S, Zou H, Xu X. Uniform TiO 2 -SiO 2 hollow nanospheres: synthesis, characterization and enhanced adsorption-photodegradation of azo dyes and phenol. Appl Surf Sci. 2014. https://doi.org/10.1016/j.apsusc.2014.03.136.
  • 48. Poulios I, Micropoulou E, Panou R, Kostopoulou E. Photooxidation of eosin Y in the presence of semiconducting oxides. Appl Catal B Environ. 2003. https://doi.org/10.1016/S0926-3373(02)00160-1.
  • 49. Mak CH, Han X, Du M, Kai JJ, Tsang KF, Jia G, Cheng KC, Shenk HH, Hsu HY. Heterogenization of homogeneous photo-catalysts utilizing synthetic and natural support materials. J Mater Chem A. 2021. https://doi.org/10.1039/D0TA08334H.
  • 50. Hosseini SN, Borghei SM, Vossoughi M, Taghavinia N. Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol. Appl Catal B Environ. 2007. https://doi.org/10.1016/j.apcatb.2006.12.015.
  • 51. Zhang C, Chaudhary U, Das S, Godavarty A, Agarwal A. Effectof porosity on photocatalytic activity of plasma-sprayed TiO 2coating. J Therm Spray Technol. 2013. https://doi.org/10.1007/s11666-013-9964-1.
  • 52. Mehla S, Das J, Jampaiah D, Periasamy S, Nafady A, Bhargav SK. Recent advances in preparation methods for catalytic thin films and coatings. Catal Sci. 2019. https://doi. org/10.1039/C9CY00518H.
  • 53. Garg P, Jamwal A, Kumar D, Sadasivuni KK, Hussaind CM, Gupta P. Advance research progresses in aluminium matrix composites: manufacturing & applications. J Mater Res Technol.2019. https://doi.org/10.1016/j.jmrt.2019.06.028.
  • 54. Hosseinabadi N, Dehghanian HA. TiO 2 photocatalytic ultrafiltration membrane developed with suspension plasma spray process. Suspens Plasma Spray Coat Adv Ceram. 2022. https://doi.org/10.3390/coatings12111764.
  • 55. Zhai M, Liu Y, Huang J, Wang Y, Chen K, Fu Y, Li H. Efficient suspension plasma spray fabrication of black titanium dioxidecoatings with visible light absorption performances. Ceram Int.2019. https://doi.org/10.1016/j.ceramint.2018.09.268.
  • 56. Liu X, Wen K, Deng C, Yang K, Deng C, Liu M, Zhou K. Nano-structured photocatalytic TiO 2 coating deposited by suspension plasma spraying with different injection positions. J Therm Spray Technol. 2018. https://doi.org/10.1007/s11666-018-0693-3.
  • 57. Pato AH, Balouch A, Talpur FN, Abdullah PP, Mahar AM, Jagirani MS, Kumar S, Sanam S. Fabrication of TiO 2 @ITO-grown nanocatalyst as efficient applicant for catalytic reduction of Eosin Y from aqueous media. Environ Sci Pollut. 2021. https://doi.org/10.1007/s11356-020-10548-y.
  • 58. Hernández-Del Castillo PC, Oliva J, Robledo-Trujillo G, Rodríguez-González V. Enhancing the eosin-yellowish dye degradation in drinking water by using TiO 2 coatings co-doped withNi and In. Environ Sci Pollut. 2023. https:// doi. org/ 10. 1007/s11356-022-22572-1.
  • 59. Moafi HF, Shojaie AF, Zanjanchi MA. The comparison of photocatalytic activity of synthesized TiO 2 and ZrO2 nanosize ontowool fibers. Appl Surf Sci. 2010. https://doi.org/10.1016/j.apsusc.2010.02.022.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-192f2436-bf2a-48ad-81b0-eeb0165cc980
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.