PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Model węzłą dostępowego sieci DWDM

Identyfikatory
Warianty tytułu
EN
Model of DWDM access node
Konferencja
XXXIII Krajowe Sympozjum Telekomunikacji i Teleinformatyki (XXXIII ;13-15.09.2017 ; Warszawa, Polska)
Języki publikacji
PL
Abstrakty
PL
Wartykule zaproponowano analityczny model systemu kolejkowego z niepełnodostępnym serwerem oraz ruchem wielousługowym. Model wykorzystano do analizy węzła sieci DWDM. Takie podejście do modelowania węzłów DWDMumożliwia określenie podstawowych charakterystyk systemu i w szczególności pozwala na oszacowanie średniego czasu oczekiwania na obsługę zgłoszeń. Ma to szczególne znacznie dla operatorów korzystających z usług sieci DWDM oferujących usługi o zadanych ograniczeniach na czas realizacji usługi.
EN
The following work presents an analytical model of a queuing system with a non-full-availability server and multi-service traffic. This model was used for the analysis of the DWDM access node. Such an approach to DWDM node modeling enables determining the basic characteristics of the system, and, in particular, allows to estimate the average waiting time for service. This is particularly important to operators using the DWDM network to offer real-time services.
Słowa kluczowe
Rocznik
Tom
Strony
876--881, CD
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Wydział Elektroniki i Telekomunikacji, Katedra Sieci Telekomunikacyjnych i Komputerowych, Politechnika Poznańska Piotrowo 3a, 60-965 Poznań
  • Instytut Mechaniki i Informatyki Stosowanej, Uniwersytet Kazimierza Wielkiego w Bydgoszczy, Kopernika 1, 85-074 Bydgoszcz
Bibliografia
  • [1] “Ericsson mobility report on the pulse of the networked society,” Ericsson, Tech. Rap., 2016.
  • [2] “Cisco visual networking index: Forecast and methodology, 2015–2020 white paper,” CISCO, Tech. Rap., 2016.
  • [3] ITU-T, “Spectral grids for wdm applications: Dwdm frequency grid,” Recommendation ITU-T G.694.1, Tech. Rap., 2012.
  • [4] G. M. Stamatelos and V. N. Koukoulidis, “Reservation-based bandwidth allocation in a radio atm network,” IEEE/ACM Transactions on Networking, vol. 5, no. 3, s. 420–428, 1997.
  • [5] M. Stasiak and M. Gła˛bowski, “Point-to-point blocking probability in switching networks with reservation,” in Proc. of 16th International Teletraffic Congress, vol. 3A. Edinburgh, UK: Elsevier, 1999, s. 519–528.
  • [6] S. Rácz, B. P. Gero, and G. Fodor, “Flow level performance analysis of a multi-service system supporting elastic and adaptive services,” Performance Evaluation, vol. 49, no. 1–4, s. 451 – 469, 2002.
  • [7] I. Moscholios, M. Logothetis, and G. Kokkinakis, “Connection-dependent threshold model: a generalization of the Erlang multiple rate loss model,” Performance Evaluation, vol. 48, s. 177–200, 2002.
  • [8] M. Sobieraj, M. Stasiak, J.Weissenberg, and P. Zwierzykowski, “Analytical model of the single threshold mechanism with hysteresis for multi-service networks,” IEICE Transactions on Communications, vol. E95-B, no. 1, s. 120–132, 2012.
  • [9] I. D. Moscholios, M. D. Logothetis, and A. C. Boucouvalas, “Blocking probabilities of elastic and adaptive calls in the erlang multirate loss model under the threshold policy,” Telecommunication Systems, vol. 62, no. 1, s. 245–262, 2016.
  • [10] Q. Huang, K.-T. Ko, and V. B. Iversen, “Approximation of loss calculation for hierarchical networks with multiservice overflows,” IEEE Transactions on Communications, vol. 56, no. 3, s. 466–473, 2008.
  • [11] M. Głąbowski, S. Hanczewski, and M. Stasiak, “Modelling of cellular networks with traffic overflow,” Mathematical Problems in Engineering, vol. 2015, s. 15, 2015, article ID 286490.
  • [12] M. Głąbowski, A. Kaliszan, and M. Stasiak, “Modelling overflow systems with distributed secondary resources,” Computer Networks, vol. 108, s. 171–183, 2016.
  • [13] K. Subramaniam and A. A. Nilsson, “Tier-based analytical model for adaptive call admission control scheme in a UMTS-WCDMA system,” in 2005 IEEE 61st Vehicular Technology Conference, vol. 4, 2005, s. 2181–2185 Vol. 4.
  • [14] S. Hanczewski, M. Stasiak, and P. Zwierzykowski, “Modelling of the access part of a multi-service mobile network with service priorities,” EURASIP Journal on Wireless Communications and Networking, vol. 2015, no. 1, s. 1–14, 2015.
  • [15] S. Hanczewski, M. Stasiak, and J. Weissenberg, “A queueing model of a multi-service system with state-dependent distribution of resources for each class of calls,” IEICE Transactions on Communications, vol. E97-B, no. 8, s. 1592–1605, 2014.
  • [16] M. Stasiak, “Queuing systems for the internet,” IEICE Transactions on Communications, vol. E99-B, no. 6, s. 1224–1242, 2016.
  • [17] S. Hanczewski, A. Kaliszan, and M. Stasiak, “Convolution model of a queueing system with the cFIFO service discipline,” Mobile Information Systems, vol. 2016, s. 15, 2016, article ID 2185714.
  • [18] S. Hanczewski, M. Sobieraj, and M. D. Stasiak, “The direct method of effective availability for switching networks with multi-service traffic,” IEICE Transactions on Communications, vol. E99-B, no. 6, s. 1291–1301, 2016.
  • [19] M. Głąbowski, S. Hanczewski, and M. Stasiak, “Modelling load balancing mechanisms in self-optimising 4G mobile networks with elastic and adaptive traffic,” IEICE Transactions on Communications, vol. E99-B, no. 8, 2016.
  • [20] M. Stasiak, “Blocking probability in a limited-availability group carrying mixture of different multichannel traffic streams,” Annales des Télécommunications, vol. 48, no. 1-2, s. 71–76, 1993.
  • [21] E. A.K., “The application of the theory of probabilities in telephone administration,” in Scand. H.C. Orsted Congress, 1920.
  • [22] M. Gła˛bowski, S. Hanczewski, M. Stasiak, and J. Weissenberg, “Modeling Erlang’s Ideal Grading with multi-rate BPP traffic,” Mathematical Problems in Engineering, vol. 2012, s. 35, 2012, article ID 456910.
  • [23] C. G. M. Vreeburg, T. Uitterdijk, Y. S. Oei, M. K. Smit, F. H. Groen, E. G. Metaal, P. Demeester, and H. J. Frankena, “First inp-based reconfigurable integrated add-drop multiplexer,” IEEE Photonics Technology Letters, vol. 9, no. 2, s. 188–190, 1997.
  • [24] D. T. Neilson, “Photonics for switching and routing,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 4, s. 669–678, 2006.
  • [25] J. Roberts, Ed., Performance Evaluation and Design of Multiservice Networks, Final Report COST 224. Brussels: Commission of the European Communities, 1992.
  • [26] A. Lotze, “History and development of grading theory,” 1967, s. 148–161.
  • [27] M. Thierer, “Delay System with Limited Accessibility,” in Prebook of the 5th International Teletraffic Congress, 1967, s. 203–213.
  • [28] S. Hanczewski, M. Stasiak, J. Weissenberg, and P. Zwierzykowski, Queuing Model of the Access System in the Packet Network. Mat. konf. Computer Networks, 2016, s. 283–293.
  • [29] C. Lee, “Analysis of switching networks,” Bell System Technical Journal, vol. 34, no. 6, 1955.
  • [30] P. Le Gall, “Etude du blocage dans les systemes de commutation telephonique automatique utilisant des commutateurs electroniques de type crossbar,” Annales des Télécommunications, vol. 11, no. 7–9, s. 159 (7/8) i 180 (9), 1956.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16fd1c96-ea22-4ea5-a56b-2185dc3fb9c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.