PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of propulsion units dedicated to test stands for aviation systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an analysis of selected propulsion units dedicated to test stands for unmanned aircraft systems. It focuses on engines suitable for aircraft with a maximum take-off mass up to 150 kg. The study includes an analysis of propulsion units that can be used to power systems on stationary test stands dedicated to advanced research and measurement of prototype aerospace technologies intended for use in rotorcraft. The analysis of propulsion units shows that electric units are a better choice for powering UAV rotorcraft test stands. Their main advantages include the possibility to simplify the construction of the device by eliminating gears and to mount the motor in a vertical position, simpler power supply, cooling and control systems and the lack of an exhaust system. Additional advantages are undoubtedly lower vibration generation, cheaper and easier operation as well as better comfort.
Czasopismo
Rocznik
Strony
39--43
Opis fizyczny
Bibliogr. 27 poz., fot. kolor., 1 wykr.
Twórcy
  • Faculty of Mechanical Engineering, Lublin University of Technology, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, Poland
Bibliografia
  • [1] AMEDURI, S., CONCILIO, A. Morphing wings review: aims, challenges, and current open issues of a technology. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2020. https://doi.org/10.1177/0954406220944423
  • [2] BAI, C.-J., WANG, W.-C. Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs). Renewable and Sustainable Energy Reviews. 2016, 63, 506-519. https://doi.org/https://doi.org/10.1016/j.rser.2016.05.078
  • [3] BARBARINO, S., BILGEN, O., AJAJ, R.M. et al. A review of morphing aircraft. Journal of Intelligent Material Systems and Structures. 2011, 22(9), 823-877. https://doi.org/10.1177/1045389X11414084
  • [4] BERNATT, J., GAWRON, S., KRÓL, E. Nowoczesne silniki z magnesami trwałymi do zastosowań trakcyjnych. TTS Technika Transportu Szynowego. 2010, 16(1-2), 73-76.
  • [5] COLOMINA, I., MOLINA, P. Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS Journal of Photogrammetry and Remote Sensing. 2014, 92, 79-97. https://doi.org/10.1016/j.isprsjprs.2014.02.013
  • [6] FADHLI, M.H.W., DALI, A.L.A., MARKUS, S. et al. Optimization of charge motions for improving emissions internal combustion 4 stroke ROTAX engines. SAE Technical Paper 2007-24-0057. 2007. https://doi.org/10.4271/2007-24-0057
  • [7] GRABOWSKI, Ł., PIETRYKOWSKI, K., KARPIŃSKI, P. Charging process analysis of an opposed-piston two-stroke aircraft Diesel engine. ITM Web of Conferences. 2017, 15, 03002. https://doi.org/10.1051/itmconf/20171503002
  • [8] HASSANALIAN, M., ABDELKEFI, A. Classifications, applications, and design challenges of drones: a review. Progress in Aerospace Sciences. 2017, 91, 91-131. https://doi.org/10.1016/j.paerosci.2017.04.003
  • [9] KRÓL, E. Silniki synchroniczne w napędach pojazdów sportowo-rekreacyjnych. Zeszyty Problemowe - Maszyny Elektryczne. 2014, 102(2), 23-27.
  • [10] LIU, Y., KREIMEIER, M., STUMPF, E. et al. Overview of recent endeavors on personal aerial vehicles: a focus on the US and Europe led research activities. Progress in Aerospace Sciences. 2017, 91, 53-66. https://doi.org/10.1016/j.paerosci.2017.03.001
  • [11] MAYOR, K., TOL, R.S.J. Scenarios of carbon dioxide emissions from aviation. Global Environmental Change. 2010, 20(1), 65-73. https://doi.org/10.1016/j.gloenvcha.2009.08.001
  • [12] MGM COMPRO. MGM COMPRO 15-30 kW Electric Motors. 2021. https://www.mgm-compro.com/products/15-30kw-electric-motors/
  • [13] NEMŚ, A. Niskoemisyjne silniki: elektryczne czy spalinowe? Elektryczne, ale nasz system by tego nie wytrzymał. Energia Gigawat, 2012, 8.
  • [14] NORTHWEST UAV. F23 Lighweight 23 Series. 2021. www.nwuav.com
  • [15] SARAF, A.K., SINGH, M.P., CHOUHAN, T.S. Aerodynamic analysis of NACA0012 airfoil using CFD. International Journal of Mechanical and Production Engineering. 2017, 5(12), 21-25.
  • [16] SEHRA, A.K., WHITLOW, W. Propulsion and power for 21st century aviation. Progress in Aerospace Sciences. 2004, 40(4-5), 199-235. https://doi.org/10.1016/j.paerosci.2004.06.003
  • [17] SIADKOWSKA, K., WENDEKER, M., MAJCZAK, A. et al. The influence of some synthetic fuels on the performance and emissions in a Wankel engine. SAE Technical Papers 2014-01-2611. 2014. https://doi.org/10.4271/2014-01-2611
  • [18] SIADKOWSKA, K. Wind tunnel research on the unmanned aerial vehicle rotor blade setting angle. Advances in Science and Technology Research Journal. 2020, 14(4), 104-114. https://doi.org/10.12913/22998624/126047
  • [19] SIADKOWSKA, K., MAJCZAK, A., BARAŃSKI, G. Studying a construction of pistons for the aircraft CI engine. Combustion Engines. 2017, 168(1), 161-167. https://doi.org/10.19206/CE-2017-126
  • [20] SOCHACZEWSKI, R., SZLACHETKA, M. Numerical analysis of a fuel pump for an aircraft Diesel engine. MATEC Web of Conferences. 2019, 252, 01003. https://doi.org/10.1051/matecconf/201925201003
  • [21] SUAS NEWS - BUSINESS OF DRONES. Northwest UAV, Hirth Engines sign distribution agreement for North and Central America. 2021. https://www.suasnews.com/2020/09/northwest-uav-hirth-engines-sign-distribution-agreement-for-north-and-central-america/
  • [22] SUROWSKA, B. Functional and hybrid materials in air transport. Eksploatacja i Niezawodność - Maintenance and Reliability 2008, 3, 30-40. http://www.ein.org.pl/sites/default/files/2008-03-04.pdf
  • [23] TAMEL S.A. Silniki IE2 w obudowie żeliwnej - 4Sg. 2009.
  • [24] UAV ENGINES. AR731- 38 BHP AV target engine. 2021.
  • [25] UMS SKELDAR SWEDEN AB. R-350 VTOL Remotely Piloted Aerial System. 2016.
  • [26] UMS SKELDAR SWEDEN AB. UMS SKELDAR R-350. 2021. https://umsskeldar.aero/our-products/land-solutions/
  • [27] VEM MOTORS GmbH. Permanent magnet synchronous motors for inverter operation. 2021.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-167f172a-e645-4ddb-b6b9-94fcb701e4ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.