PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Halloysite reinforced epoxy composites with improved mechanical properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Halloysite nanotubes (HNTs) reinforced epoxy composites with improved mechanical properties were prepared. The prepared HNTs reinforced epoxy composites demonstrated improved mechanical properties especially the fracture toughness and flexural strength. The flexural modulus of nanocomposite with 6% mHNTs loading was 11.8% higher than that of neat epoxy resin. In addition, the nanocomposites showed improved dimensional stability. The prepared halloysite reinforced epoxy composites were characterized by thermal gravimetric analysis (TGA). The improved properties are attributed to the unique characteristics of HNTs, uniform dispersion of reinforcement and interfacial coupling.
Rocznik
Strony
133--135
Opis fizyczny
Bibliogr. 10 poz., rys., tab.
Twórcy
autor
  • Government College University Faisalabad, Department of Applied Chemistry, Pakistan
autor
  • Government College University Faisalabad, Department of Applied Chemistry, Pakistan
autor
  • Government College University Faisalabad, Department of Applied Chemistry, Pakistan
autor
  • Government College University Faisalabad, Department of Applied Chemistry, Pakistan
autor
  • University of the Punjab, Institute of Chemistry, Lahore, Pakistan
autor
  • Government College University Faisalabad, Department of Chemistry, Pakistan
autor
  • Government College University Faisalabad, Department of Chemistry, Pakistan
Bibliografia
  • 1. Kirkman, J.H. (1977). Possible structure of halloysite disks and cylinders observed in some New Zealand rhyolitic tephras. Clay Miner. 3(12), 199–216.
  • 2. Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D. & Delvaux, B. (2005). Halloysite clay minerals — a review. Clay Miner. 4(40), 383–426. DOI: 10.1180/0009855054040180.
  • 3. Levis, S.R. & Deasy, P.B. (2002). Characterisation of halloysite for use as a microtubular drug delivery system. Inter. J. Pharm. 1–2(243), 125–134. DOI: 10.1016/S0378-5173(02)00274-0.
  • 4. Imai, T., Naitoh, Y., Yamamoto, T. & Ohyanagi, M. (2006). Translucent Nano Mullite Based Composite Ceramic Fabricated by Spark Plasma Sintering. J. Cer. Soc. JPN 1325(114), 138–140. DOI: 10.2109/jcersj.114.138.
  • 5. Wilson, I.R. (2004). Kaolin and halloysite deposits of China. Clay Miner. 1(39), 1–15. DOI: 10.1180/0009855043910116.
  • 6. Guo, B., Zou, Q., Lei, Y. & Jia, D. (2009). Structure and Performance of Polyamide 6/Halloysite Nanotubes Nanocomposites. Polym. J. 10(41), 835–842.
  • 7. Handge, U.A., Hedicke-Höchstötter, K. & Altstädt, V. (2010). Composites of polyamide 6 and silicate nanotubes of the mineral halloysite: Influence of molecular weight on thermal, mechanical and rheological properties. Polymer 12(51), 2690–2699. DOI: http://dx.doi.org/10.1016/j.polymer.2010.04.041.
  • 8. Ning, N., Yin, Q., Luo, F., Zhang, Q., Du, R. & Fu, Q. (2007). Crystallization behavior and mechanical properties of polypropylene/halloysite composites. Polymer 25(48), 7374–7384. http://dx.doi.org/10.1016/j.polymer.2007.10.005
  • 9. Oburoğlu, N., Ercan, N., Durmus, A. & Kaşgöz, A. (2011). Effects of Halloysite Nanotube on the Mechanical Properties and Nonisothermal Crystallization Kinetics of Poly(Butylene Terephthalate) (PBT). J. Macromol. Sci., Part B 5(51), 860–879. DOI: 10.1080/00222348.2011.610231.
  • 10. Szczygielska, A. & Kijeński, J. (2011). Studies of properties of polypropylene/halloysite composites. Pol. J. Chem. Technol. 3(13), 61. DOI: 10.2478/v10026-011-0039-0.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15956b40-85ab-4e4a-865d-b75065d009be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.