Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The research objects are gas turbine engines parts, manufactured using an innovative method of additive manufacturing - selective laser sintering. The main problem solved in this work is the low quality of the surface layer and the residual porosity of the parts obtained by this method, which significantly limits their operational characteristics and durability. As a result of the experimental studies, rational operating parameters of diamond smoothing were established. This allowed to significantly improve the surface quality and increase the operational characteristics of parts made of heat-resistant alloys INCONEL 718 and an intermetallic alloy based on titanium aluminide OX45-3ODS. The effectiveness of diamond smoothing is explained by local plastic deformation and compaction of the surface layer of parts under the influence of high contact pressures and temperatures. This leads to a significant reduction in surface roughness, an increase in the surface hardness due to strain hardening and a significant reduction in the size and number of residual pores. A characteristic feature of the obtained results is the ability to control the quality parameters of the surface layer by varying the diamond smoothing operating parameters - smoothing force, feed, radius, and geometry of the smoother's working part. The established regularities of the smoothing operating parameters have an impact on the quality characteristics of the surface. This information can be utilized in the development of highly efficient technological processes for the production and restoration of gas turbine engines, critical components of unmanned aerial vehicles, obtained through selective laser sintering. Implementing the elaborated technological recommendations will permit broadening the range of goods produced by additive manufacturing and enhancing their capacity and dependability during operation under conditions of cyclical loads and extreme temperatures.
Słowa kluczowe
Rocznik
Tom
Strony
243--260
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
- Faculty of Mechanical Engineering, Zaporizhzhia Polytechnic National University, Zhukovsky str. 64, 69063 Zaporizhzhia, Ukraine
autor
- Faculty of Mechanical Engineering, Zaporizhzhia Polytechnic National University, Zhukovsky str. 64, 69063 Zaporizhzhia, Ukraine
autor
- Faculty of Mechanical Engineering, Zaporizhzhia Polytechnic National University, Zhukovsky str. 64, 69063 Zaporizhzhia, Ukraine
Bibliografia
- 1. Goh, G.D., S. Agarwala, G.L. Goh, V. Dikshit, S.L. Sing, W.Y. Yeong. 2017. „Additive manufacturing in unmanned aerial vehicles (UAVs): Challenges and potential”. Aerospace Science and Technology 63: 140-151. DOI: https://doi.org/10.1016/j.ast.2016.12.019.
- 2. Zhang B., Z. Song, F. Zhao, C. Liu. 2022. „Overview of propulsion systems for unmanned aerial vehicles”. Energies 15(2): 455. DOI: https://doi.org/10.3390/en15020455.
- 3. Balli O., H. Caliskan. 2021. „On-design and off-design operation performance assessments of an aero turboprop engine used on unmanned aerial vehicles (UAVs) in terms of aviation, thermodynamic, environmental and sustainability perspectives”. Energy Conversion and Management 243: 114403. DOI: https://doi.org/10.1016/j.enconman.2021.114403.
- 4. Clark I. 2005. „Limited life engines for UAVs”. The Aeronautical Journal 109(1095): 247-254. DOI: https://doi.org/10.1017/S0001924000005224.
- 5. Czech Piotr. 2012. „Identification of Leakages in the Inlet System of an Internal Combustion Engine with the Use of Wigner-Ville Transform and RBF Neural Networks”. Communications in Computer and Information Science 329: 175-182. DOI: https://doi.org/10.1007/978-3-642-34050-5_47. Springer, Berlin, Heidelberg. ISBN: 978-3-642-34049-9; 978-3-642-34050-5. ISSN: 1865-0929. In: Mikulski Jerzy (eds), Telematics in the transport environment, 12th International Conference on Transport Systems Telematics, Katowice Ustron, Poland, October 10-13, 2012.
- 6. Czech Piotr. 2011. „Diagnosing of disturbances in the ignition system by vibroacoustic signals and radial basis function - preliminary research”. Communications in Computer and Information Science 239: 110-117. DOI: https://doi.org/10.1007/978-3-642-24660-9_13. Springer, Berlin, Heidelberg. ISBN: 978-3-642-24659-3. ISSN: 1865-0929. In: Mikulski Jerzy (eds), Modern transport telematics, 11th International Conference on Transport Systems Telematics, Katowice Ustron, Poland, October 19-22, 2011.
- 7. Altıparmak S.C., B. Xiao. 2021. „A market assessment of additive manufacturing potential for the aerospace industry”. Journal of Manufacturing Processes 68: 728-738. DOI: https://doi.org/10.1016/j.jmapro.2021.05.072.
- 8. Karpinos B.S., D.V. Pavlenko, O.Ya. Kachan. 2012. „Deformation of a submicrocrystalline vt1-0 titanium alloy under static loading”. Strength of Materials 44: 100-107. DOI: https://doi.org/10.1007/s11223-012-9354-9.
- 9. Vyshnepolskyi Y., D. Pavlenko, D. Tkach. 2020. „Parts Diamond Burnishing Process Regimes optimization Made of INCONEL718 Alloy via Selective Laser Sintering Method”. In: Proceedings of the 2020 IEEE 10th International Conference on “Nanomaterials: Applications and Properties”. NAP 2020. DOI: https://doi.org/10.1109/NAP45177.2020.9309661.
- 10. Pavlenko D., E. Kondratiuk, Y. Torba, Y. Vyshnepolskyi, D. Stepanov. 2022. „Improving the efficiency of finishing-hardening treatment of gas turbine engine blades”. Eastern-European Journal of Enterprise Technologies. DOI: https://doi.org/10.15587/1729-4061.2022.252292.
- 11. Tshephe T.S., S.O. Akinwamide, E. Olevsky, P.A. Olubambi. 2022. „Additive manufacturing of titanium-based alloys- A review of methods, properties, challenges, and prospects”. Heliyon 8(3): e09041. DOI: https://doi.org/10.1016/j.heliyon.2022.e09041.
- 12. Li W.P., H. Wang, Y.H. Zhou, Y.Y. Zhu, S.F. Lin, M. Yan, N. Wang. 2022. „Yttrium for the selective laser melting of Ti-45Al-8Nb intermetallic: Powder surface structure, laser absorptivity, and printability”. Journal of Alloys and Compounds 892: 161970. DOI: https://doi.org/10.1016/j.jallcom.2021.161970.
- 13. Ahmad S., S. Mujumdar, V. Varghese. 2022. “Role of porosity in machinability of additively manufactured Ti-6Al-4V”. Precision Engineering 76: 397-406. DOI: https://doi.org/10.1016/j.precisioneng.2022.04.010.
- 14. Kaschel F.R., M. Celikin, D.P. Dowling. 2020. „Effects of laser power on geometry, microstructure and mechanical properties of printed Ti-6Al-4V parts”. Journal of Materials Processing Technology 278: 116539. DOI: https://doi.org/10.1016/j.jmatprotec.2019.116539.
- 15. Moghimian P., T. Poirié, M. Habibnejad-Korayem, J.A. Zavala, J. Kroeger, F. Marion, F. Larouche. 2021. „Metal powders in additive manufacturing: A review on reusability and recyclability of common titanium, nickel and aluminum alloys”. Additive Manufacturing 43: 102017. DOI: https://doi.org/10.1016/j.addma.2021.102017.
- 16. Cacace S., M. Boccadoro, Q. Semeraro. 2023. “Investigation on the effect of the gas-to-metal ratio on powder properties and PBF-LB/M processability”. Progress in Additive Manufacturing 9: 889-904. DOI: https://doi.org/10.1007/s40964-023-00490-z.
- 17. Soong S.Z., W.L. Lai, A.N. Kay Lup. 2023. „Atomization of metal and alloy powders: Processes, parameters, and properties”. AIChE Journal 69(11): e18217. DOI: https://doi.org/10.1002/aic.18217.
- 18. Dong S., G. Ma, P. Lei, T. Cheng, D. Savvakin, O. Ivasishin. 2021. “Comparative study on the densification process of different titanium powders”. Advanced Powder Technology 32(7): 2300-2310. DOI: https://doi.org/10.1016/j.apt.2021.05.009.
- 19. Delpazir M.H., M. Asherloo, S.N.K. Abad, A. Thompson, V. Guma, S.D. Bagi, A. Mostafaei. 2023. „Microstructure and corrosion behavior of differently heat-treated Ti-6Al-4V alloy processed by laser powder bed fusion of hydride-dehydride powder”. Corrosion Science 224: 111495. DOI: https://doi.org/10.1016/j.corsci.2023.111495.
- 20. Ng C.H., M.J. Bermingham, M.S. Dargusch. 2023. “Eliminating porosity defects, promoting equiaxed grains and improving the mechanical properties of additively manufactured Ti-22V-4Al with super-transus hot isostatic pressing”. Additive Manufacturing 72: 103630. DOI: https://doi.org/10.1016/j.addma.2023.103630.
- 21. Zhang M., C.H. Ng, A. Dehghan-Manshadi, C. Hall, M.J. Bermingham, M.S. Dargusch. 2023. “Towards isotropic behaviour in Ti-6Al-4V fabricated with laser powder bed fusion and super transus hot isostatic pressing”. Materials Science and Engineering: A 874: 145094. DOI: https://doi.org/10.1016/j.msea.2023.145094.
- 22. Marques A., Â. Cunha, F. Bartolomeu, F.S. Silva, Ó. Carvalho. 2023. “Inconel 718 produced by hot pressing: optimization of temperature and pressure conditions”. The International Journal of Advanced Manufacturing Technology 128(1-2): 891-901. DOI: https://doi.org/10.1007/s00170-023-11950-9.
- 23. Zhu L., Y. Pan, Y. Liu, Z. Sun, X. Wang, H. Nan, X. Lu. 2023. „Effects of microstructure characteristics on the tensile properties and fracture toughness of TA15 alloy fabricated by hot isostatic pressing”. International Journal of Minerals, Metallurgy and Materials 30(4): 697-706. DOI: https://doi.org/10.1007/s12613-021-2371-6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14f99d19-fbcf-4a72-b463-a134e3b1e220
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.