PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of thermoelastic stress analysis for stress distribution evaluation of an industrial equipment under regular operating conditions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermoelastic stress analysis (TSA) is an experimental technique enabling the determination of stress pattern and level. Because of the dependence of the technique on a temporally changing load on the target structure, it is mainly considered as a technique suited to the laboratory, and therefore there is a dearth of real-world industrial applications. An experimental study of TSA applicability in determining the stress level distribution in a heavy industrial equipment joint (a bucket wheel excavator joint) under ordinary operating conditions was conducted. In the research, TSA and strain gauge measurements were validated with numerical computations. As the first step of validation, a numerical finite element analysis (FEA) was implemented. The authors then introduced an innovative approach to calibrating TSA results, which implements Rainflow decomposition of strain gauge measurements. Furthermore, a numerical validation approach based on modal frequency response analysis was implemented. Both the experimental and numerical approaches gave remarkably similar results, thereby confirming the possibility of effective use of thermoelastic stress analysis in industrial applications outside the laboratory.
Rocznik
Strony
art. no. e106
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, ul. Ignacego Łukasiewicza 5, 50‑371 Wrocław, Poland
  • Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, ul. Ignacego Łukasiewicza 5, 50‑371 Wrocław, Poland
  • Stress Photonics Inc, 3002 Progress Rd, Madison, WI, USA
Bibliografia
  • 1. Moczko P, Pietrusiak D (2019), Experimental-numerical method for assessing the condition of opencast mining and material handling equipment, Aust J Struct Eng pp 1-11.
  • 2. Bosnajk S, Petkovic Z, Simonovic A, Zrnic N, Gnjatovic N (2013) Designing-in failures and redesign of bucket wheel excavator undercarriage, Eng Fail Anal 35: 95-103.
  • 3. Kohler M, Jenne S, Potter K, Zenner H (2017) Load assumption for fatigue design of structures and components. Springer.
  • 4. Hobbacher AF Recommendations for fatigue design of welded joints and components, Second. Springer, International Institute of Welding, 2019.
  • 5. Cloud G Optical Methods of Engineering Analysis. Cambridge University Press, 1995.
  • 6. Richard JG, Patterson AE, Rowlands ER. Thermoelastic stress analysis. In: Sharpe WN, editor. Springer Handbook of Experimental Solid Mechanics, J. SEM: Springer; 2008. p. 743-67.
  • 7. Misiewicz R, Moczko P. Wykorzystanie efektu termosprężystego do określenia rozkładu naprężeń w probce z karbem. Przegląd Mech. 2018;77(5):40-4.
  • 8. Stanley P. Beginnings and early development of thermoelastic stress analysis. Strain. 2008;44(4):285-97. https://doi.org/10.1111/j.1475-1305.2008.00512.x.
  • 9. Belgen MH (1967) Infrared radiometric stress intrumentation application range study. North American Avation/National Aeronautics and Space Administration.
  • 10. Belgen MH. Structural stress measurement with an infrared radiometer. ISA Trans. 1967;6:49-53.
  • 11. Mountain DS, Webber JMB (1978) Stress pattern analysis by thermal emission (SPATE).
  • 12. Lesniak JR, Boyce BR. A high-speed differential thermographic camera. SEM Spring Conf Proc. 1994;1:6-8.
  • 13. Dulieu-Smith JM, Quinn S, Shenoi RA, Read PJCL, Moy SSJ. Thermoelastic stress analysis of a GRP Tee Joint. Appl Compos Mater. 1997;4(5):283-303. https://doi.org/10.1007/BF02481395.
  • 14. Rhee J, Rowlands RE. Thermoelastic-numerical hybrid analysis of holes and cracks in composites. Exp Mech. 1999;39(4):349-55. https://doi.org/10.1007/BF02329816.
  • 15. Stanley P, Garroch C. Problems and progress in the characterisation and stress analysis of moulded fibre-reinforced composites. A Thermoelastic Approach. JSME Int J Ser A. 2000;43(4):296-304. https://doi.org/10.1299/jsmea.43.296.
  • 16. Pitarresi G, Found MS, Patterson EA. An investigation of the influence of macroscopic heterogeneity on the thermoelastic response of fibre reinforced plastics. Compos Sci Technol. 2005;65(2):269-80. https://doi.org/10.1016/j.compscitech.2004.07.008.
  • 17. Ju SH, Rowlands RE. Thermoelastic determination of crack-tip coordinates in composites. Int J Solids Struct. 2007;44(14-15):4845-59. https://doi.org/10.1016/j.ijsolstr.2006.12.003.
  • 18. Horn GP, Mackin TJ, Kurath P, Introduction I (2001) Estimating the Residual fatigue lifetimes of impact-damaged composites using thermoelastic stress analysis, 2(3)x.
  • 19. Wong AK. A non-adiabatic thermoelastic theory for composite laminates. J Phys Chem Solids. 1991;52(3):483-94. https://doi.org/10.1016/0022-3697(91)90180-8.
  • 20. Sugimoto S, Rowlands RE, Ishikawa T A thermal conductivity analysis affecting thermoelastic stress measurement of laminate composites, ICCM 13 Conference, 2001.
  • 21. Bakis C, Yih H, Stinchcomb W, Reifsnider K. Damage initiation and growth in notched laminates under reversed cyclic loading. Compos Mater Fatigue Fract. 1989. https://doi.org/10.1520/STP10409S.
  • 22. Backman D, Greene RJ. Gas turbine blade stress analysis and mode shape determination using thermoelastic methods. Appl Mech Mater. 2008;13-14:281-7. https://doi.org/10.4028/www.scientific.net/AMM.13-14.281.
  • 23. Turner SR, Pollard NG Application of ’SPATE 1 to high frequency vibration measurement of Aero Engine Components, SPIE Vol. 731 Stress Anal. by Thermoelastic Tech., pp. 162-177, 1987.
  • 24. Tomlinson R, Gower I, Greene RJ, Marsavina L, Patterson EA (2004) Fatigue life assessment of compressor blades using thermoelasticity, Strain.
  • 25. Rajic N, Galea SC, Rowlands D. Thermoelastic stress analysis-emerging opportunities in structural health monitoring. Key Eng Mater. 2013;558:501-9. https://doi.org/10.4028/www.scientific.net/kem.558.501.
  • 26. Rajic N, Galea S. Thermoelastic stress analysis and structural health monitoring: An emerging nexus. Struct Heal Monit. 2015;14(1):57-72. https://doi.org/10.1177/1475921714548936.
  • 27. Tomlinson RA, Calvert GC. Industrial applications of thermoelastic stress Analysis. Appl Mech Mater. 2004;1-2:165-70. https://doi.org/10.4028/www.scientific.net/amm.1-2.165.
  • 28. Audenino AL, Calderale PM (1996) Combined thermoelastic and photoelastic stress analysis of an automotive front suspension link, vol. I.
  • 29. Planting E Thermoelastic behavior of a small bearing cage, Clemson University, 2009.
  • 30. Marsili R, Borgarelli N. Measurement of contact pressure distributions between surfaces by thermoelasticic stress analisys. Diagnostyka. 2017;18(4):61-7.
  • 31. Wang WJ, Dulieu-Barton JM, Li Q. Assessment of non-adiabatic behaviour in thermoelastic stress analysis of small scale components. Exp Mech. 2010;50(4):449-61. https://doi.org/10.1007/s11340-009-9249-2.
  • 32. Calvert GC. Developments in rapid thermoelastic analysis. Strain. 1999;35(2):67-71. https://doi.org/10.1111/j.1475-1305.1999.tb01130.x.
  • 33. Calvert GC (2001) Stress analysis using rapid prototyping techniques, Rapid Prototype Casebook, Prof. Eng. Publ. Ltd, Sect. 1, pp 45-52.
  • 34. Carella G, Galietti U, Modugno D. On the feasibility of thermoelastic stress analysis on rapid prototyping models. Appl Mech Mater. 2005;3-4(November):355-60. https://doi.org/10.4028/www.scientific.net/AMM.3-4.355.
  • 35. Sakagami T, et al. Verification of the repair effect for fatigue cracks in members of steel bridges based on thermoelastic stress measurement. Eng Fract Mech. 2017;183:1-12. https://doi.org/10.1016/j.engfracmech.2017.05. 024.
  • 36. Sakagami T, Izumi Y, Shiozawa D, Fujimoto T, Mizokami Y, Hanai T. Nondestructive evaluation of fatigue cracks in steel bridges based on thermoelastic stress measurement. Procedia Struct Integr. 2016;2:2132-9. https://doi.org/10.1016/j.prostr.2016.06.267.
  • 37. Bošnjak SM, Oguamanam DCD, Zrnić ND. The influence of constructive parameters on response of bucket wheel excavator superstructure in the out-of-resonance region. Arch Civ Mech Eng. 2015;15(4):977-85. https://doi.org/10.1016/j.acme.2015.03.009.
  • 38. Brkić AĐ, Maneski T, Ignjatović D, Jovančić PD, Spasojević Brkić VK (2014) Diagnostics of bucket wheel excavator discharge boom dynamic performance and its reconstruction, Eksploat. i Niezawodn.-Maint. Reliab., 16(2):188-197.
  • 39. Gnjatovic N Influence of constructional parameters and parameters of excitation on response of the bucket wheel excavator with two masts in the out-of-resonance region, PhD Thesis, University of Belgrade, 2016.
  • 40. Boyce BR, Lesniak JR Thermoelastic measurement techniques enabled by self-reference, Conf. Proc. Soc. Exp. Mech. Ser., pp 125-127, 2019, https://doi.org/10.1007/978-3-319-95074-7_24.
  • 41. Offermann S, Beaudoin JL, Bissieux C, Frick H. Thermoelastic stress analysis under nonadiabatic conditions. Exp Mech. 1997;37(4):409-13. https://doi.org/10.1007/BF02317306.
  • 42. ASTM E1049, Standard practices for cycle counting in fatigue analysis, ASTM Stand., vol. 85, no. Reapproved 2017, pp. 1-10, 2017, https://doi.org/10.1520/E1049-85R17.2.
  • 43. Glinka G Fatigue Design of Welded Structures - Physical Modeling vs Empirical Rules. University of Waterloo, p 124, 2008.
  • 44. Fatigue Analysis , Damage calculation, Rainflow counting. Dewesoft d.o.o., p. 30, 2020.
  • 45. ASTM E1049-85, Standard practices for cycle counting in fatigue analysis, Annu. B. ASTM Stand. West Conshohocken, PA, vol. 85, no. Reapproved 2011, pp. 1-10, 2011, https://doi.org/10.1520/E1049-85R11E01.2.
  • 46. Barone S, Patterson EA. An alternative finite difference method for post-processing thermoelastic data using compatibility. J Strain Anal Eng Des. 1998;33(6):437-47. https://doi.org/10.1243/0309324981513138.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-136dd84b-1b17-4512-8c5f-399e96b88954
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.