Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Phragmites australis i Typha angustifolia jako potencjalne rośliny akumulujące cynk i miedź w ekosystemie wodnym zlokalizowanym na terenie miasta
Języki publikacji
Abstrakty
Two water plant species were analysed as potential accumulators of zinc and copper in water reservoirs in city areas. Moreover, water analysis were performed during the growing season to find some relations. Zn and Cu concentrations in water decreased at the outflow of Malta Lake. The contamination factor revealed very high values for Zn concentration in water, while Cu was at a low or medium level. Accumulation of both trace elements in plant organs was observed during the growing season in all plant organs. Zn bioaccumulation was found at lower level than Cu. Higher levels of both heavy metals were noted for belowground organs However, the translocation factor indicated that Zn were transported in the higher amounts to the above-ground parts of plants.
Dwa gatunki wodne były analizowane pod kątem akumulacji cynku i miedzi ze zbiornika wodnego zlokalizowanego na terenie miejskim. Przeprowadzono również badania zawartości tych pierwiastków w wodzie w celu odniesienia uzyskanych wyników w roślinach. Stężenia Zn i Cu były mniejsze na odpływie z jeziora Malta. Współczynnik zanieczyszczenia wykazały bardzo wysoki poziom Zn w wodzie, podczas gdy Cu na niskim i średnim poziomie. W ciągu sezonu wegetacyjnego zauważono zwiększenie stężenia w organach roślin obu gatunków. Stwierdzono niższy poziom akumulacji cynku aniżeli miedzi w roślinach. Wykazano ponadto wyższy poziom akumulacji obu pierwiastków w podziemnych częściach roślin. Wskaźnik translokacji wskazuje na większy transport do części nadziemnych cynku aniżeli miedzi.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
246--257
Opis fizyczny
BIbliogr. 27 poz., tab., rys.
Twórcy
autor
- Poznań University of Life Sciences
autor
- Poznań University of Life Sciences
autor
- Poznań University of Life Sciences
autor
- Poznań University of Life Sciences
autor
- Poznań University of Life Sciences
Bibliografia
- 1. Aksoy, A., Duman, F., Sezen, G. (2005). Heavy metal accumulation and distribution in narrow-leaved cattail (Typha angustifolia) and common reed (Phragmites australis). Journal of Freshwater Ecology, 20(4), 783-785.
- 2. Baldantoni, D., Alfani, A., Di Tommasi, P., Bartoli, G., Virzo De Santo, A. (2004). Assessment of macro and microelement accumulation capability of two aquatic plants. Environmental Pollution, 130, 149-156.
- 3. Bogucki, J., Staniewska-Zątek, W. (1996). Warunki do rekreacji mieszkańców miasta Poznania. W: Środowisko naturalne miasta Poznania. Cz. 1. Red. J. May S. Stelmasiak L. Kurek I. Ludwiczak M. Niezborała. Poznań: Total - Druk, 155-173.
- 4. Bose, S., Vedamati, J., Rai, V., Ramanathan, A. L. (2008). Metal uptake and transport by Typha angustrata L. grown on metal contaminated waste amended soil: an implication of phytoremediation. Geoderma, 145, 136-142.
- 5. Bragato, C., Brix, H., Malagoli, M. (2006). Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus Maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environmental Pollution, 144(3), 967-975.
- 6. Cohen, C. K, Fox, T. C, Garvin, D. F, Kochian, L. V. (1998). The role of irondeficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol., 116, 1063-1072.
- 7. Czarnecka, H. (RED.) (2005). Atlas Podziału Hydrograficznego Polski. Warszawa: IMGW.
- 8. Drzewiecka, K., Borowiak, K., Mleczek, M., Zawada, I., Goliński, P. (2011). Bioaccumulation of zinc and copper by Phragmites australis (Cav.) Trin ex Steudel and Typha angustifolia (L.) growing in natural water ecosystems. Fresenius Environmental Bulletin, 20(2), 325-333.
- 9. Duman, F., Cicek, M., Sezen, G. (2007). Seasonal changes of metal accumulation and distribution in common reed club rush (Schoenoplectus lacustris) and common reed (I). Ecotoxicology, 16, 457-465.
- 10. Ferati, F., Kerolli-Mustafa, M., Kraja-Ylli, A. (2015). Assessment of heavy metal contamination in water and sediments of Trepça and Sitnica rivers, Kosovo, using pollution indicators and multivariate cluster analysis. Environmental Monitoring Assessment, 187, 338.
- 11. Greger, M. (2004). Metal availability uptake, uptake, transport and accumulation in plants. Heavy metal stress in plants. From biomolecules to ecosystems. In: M.N.V. Prasad (Ed.). New York: Springer.
- 12. Borowiak, K., Kanclerz, J., Mleczek, M., Staniszewski, R., Lisiak, M. (2016). Accumulation of Cd and Pb in water, sediment and two littoral plants (Phragmites australis, Typha angustifolia) of freshwater ecosystem. Archives of Environmental Protection (w druku).
- 13. Kondracki, J. (2009). Geografia regionalna Polski. Warszawa: PWN.
- 14. Lesage, E., Rousseau, D. P. L., Meers, E., Tack, F. M.,G., De Pauw, N. (2007). Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium. Science of the Total Environment, 380, 102-115.
- 15. Luo, Y. & Rimmer D.L. (1995). Zincecopper interaction affecting plant growth on metl contaminated soil. Environmental Pollution, 88, 79-83.
- 16. Marchner, H. (1995). Mineral Nutrition of higher plants. London: Academic Press.
- 17. Marques, A.P.G.C., Rangel, A. O.S.S., Castro, P.M.L. (2007). Zinc accumulation in plant species indigenous to a Portuguese polluted site: relation with soil contamination. Journal of Environmental Quality, 36, 646-653.
- 18. Moore, F., Forghani, G., Qishlaqi, A. (2009). Assessment of heavy metal contamination in water and surface sediments of the Maharlu Saline Lake, SW Iran. Iranian Journal of Science and Technology, Transaction A, 33, 43-53.
- 19. Sany, S.B. T., Salleh, A., Sulaiman, A.H., Sasekumar, A., Rezayi, M., Tehrani, G.M. (2013). Heavy metal contamination in water and sediment of the Port Klang coastal area, Selangor, Malaysia. Environmental Earth Sciences 69(6), 2013-2025.
- 20. Saraswat, S. & Rai, J.P.N. (2009). Phytoextraction potential of six plant species grown in multimetal contaminated soil. Chemistry and Ecology 25(1), 1-11.
- 21. Southichak B., Nakano, K., Nomura, M., Chiba, N. (2006). Phragmites australis: A novel bioabsorbent for the removal of heavy metals from aqueous solution. Water Research, 40, 2295-2302.
- 22. Vymazal, J., Kröpfelova, L., Švehla, J., Chrastný, V., Štíchová, J. (2009). Trace elements in Phragmitres australis growing in constructed wetlands for treatment of municipal wastewater. Ecological Engineering, 35, 303-309.
- 23. Vymazal, J., Švehla, J., Kröpfelová, L., Chrasntý, V. (2007). Trace metals in Phragmites australis and Phalaris arundinacea growing in constructed and natural wetlands. Science of the Total Environment, 380, 154-162.
- 24. Windham, L., Weis, J.S., Weis, P. (2003). Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Estuarine, Coastal and Shelf Science, 56, 63-72.
- 25. Yu, Z. & Zhou, Q. (2009). Growth responses and cadmium accumulation of Mirabilis jalapa L. under interaction between cadmium and phosphorus. J Hazard Mater., 167, 38-43.
- 26. Zarei, I., Pourkhabbaz, A., Khuzestani, R. B. (2014). An assessment of metal contamination risk in sediments of Hara Biosphere Reserve, southern Iran with a focus on application of pollution indicators. Environ Monit. Assess, 186, 6047-6060.
- 27. Zayed, A.M. & Terry, N. (2003). Chromium in the environment: Factors affecting biological remediation. Plant Soil, 249, 139-156.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-129a227f-2cfb-4951-a2b7-08727cd6f17f