PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studies of silver diffusion into soda-lime glass using analysis of plasmon evolution

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Badania dyfuzji srebra do szkła sodowo-wapniowego z użyciem analizy ewolucji plazmonowej
Języki publikacji
EN PL
Abstrakty
EN
Silver diffused into microscope slides made of an AgNO3/NaNO3 alloy. Surface plasmon resonance of the Ag nanoparticle was analyzed by optical spectroscopy. The mechanism of silver crystal growth was analyzed by scanning electron microscopy (SEM) equipped with X-ray energy diffraction (EDS) technique. The evolution of local surface plasmon resonance was studied by UV-VIS spectroscopy. Samples were also analyzed by X-ray photoelectron spectroscopy (XPS) and ellipsometry.
PL
Srebro dyfundowało do szkiełek mikroskopowych ze stopu AgNO3/NaNO3. Powierzchniowy rezonans plazmonowy nanocząstki Ag analizowano za pomocą spektroskopii optycznej. Mechanizm wzrostu kryształów srebra analizowano za pomocą skaningowej mikroskopii elektronowej (SEM) wyposażonej w technikę dyfrakcji energii rentgenowskiej (EDS). Ewolucję lokalnego rezonansu plazmonowego powierzchni badano za pomocą spektroskopii UV-VIS. Próbki analizowano również za pomocą rentgenowskiej spektroskopii fotoelektronowej (XPS) i elipsometrii.
Słowa kluczowe
Rocznik
Strony
220--227
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] Sato, T., Ahmed, H., Brown, D., Johnson, B. F. G.: Single electron transistor using a molecularly linked gold colloidal particle chain, J. Appl. Phys., 8, (1997), 696-701. srebro
  • [2] Mukherjee, B., Mukherjee, M.: Nonvolatile memory device based on Ag nanoparticle: Characteristics improvement, Appl. Phys. Lett., 94, (2009), 173510.
  • [3] Maier, S. A., Kik, P. G., Atwater, H. A.: Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss, Appl. Phys. Lett., 81, (2002), 1714-1716.
  • [4] Pillai, S., Catchpole, K. R., Trupke, T., Green, M. A.: Surface plasmon enhanced silicon solar cells, J. Appl. Phys., 101, (2007), 93105.
  • [5] Oliveira, E., Nunez, C., Santos, H. M., Fernandez-Lodeiro, J., Fernandez-Lodeiro, A., Capelo, J. L., Lodeiro, C.: Revisiting the use of gold and silver functionalised nanoparticles as colorimetric and fluorometric chemosensors for metal ions, Sensors and Actuators B, 212, (2015), 297-328.
  • [6] Siwulski, S., Nocuń, M.: Diffusion colouring of glass with silver ions, Optica Applicata, 33, (2003), 155-160.
  • [7] De, G., Medda, S. K., De, S., Pal, S.: Metal nanoparticle doped coloured coatings on glasses and plastics trough tuning of surface plasmon band position, Bull. Mater. Sci., 31, 3, (2008), 479-485.
  • [8] Chofra, A., Belkhir, N., Rubio, F., Rubio, J.: Study of the silver diffusion in soda lime and borosilicate glasses: effect on mechanical properties of glasses, 21 Congres Francais de Mecanique, Bordeaux 26 aout, 2013.
  • [9] Peyser, L. A., Vinson, A. E., Bartko, A. P., Dickson, R. M.: Photoactivated Fluorescence from Individual Silver Nanoclusters, Science, 291, (2001), 103-106.
  • [10] Thomas, S., Nair, S. K., Jamal, E. M. A., Al-Harthi, S. H., Varma, M. R., Anantharaman, M. R.: Size-dependent surface plasmon resonance in silver silica nanocomposites, Nanotechnology, 19, 7, (2008), 075710.
  • [11] Samuneva, B., Dimitriev, Y., Dimitrov, V., Kashchieva, E., Encheva, G.: Silica Gels and Gel Glasses Containing Silver and Platinum Metal Particles, J. Sol-Gel Sci. Technol., 13, (1998), 969-974.
  • [12] Akkopru, B., Durucan, C.: Preparation and microstructure of sol-gel derived silver-doped silica, J. Sol-Gel Sci. Technol., 43, (2007), 227-236.
  • [13] Meldrum, A., Haglund Jr., R. F., Boatner, L. A., White, C. W.: Nanocomposite Materials Formed by Ion Implantation, Adv. Mater., 13, 19, (2001), 1431-1444.
  • [14] Dubiel, M., Hofmeister, H., Wendler, E.: Formation of nanoparticles in soda-lime glasses by single and double ion implantation, J. Non-crystalline Solids, 354, (2008), 607-611.
  • [15] Sharma, S. K., Kumar, P., Kumar, Ravi, Knobel, M., Thakur, P., Chae, K. H., Choi, W. K., Kumar, R., Kanjilal, D.: Local structure, optical and magnetic studies of Ni nanostructures embedded in a SiO2 matrix by ion implantation, J. Phys. Condens. Matter., 20, (2008), 285211.
  • [16] Haglund Jr., R.F.: Ion implantation as a tool in the synthesis of practical third-order nonlinear optical materials, Mater. Sci. Eng. A, 253, 1-2, (1998), 275-283.
  • [17] Varma, R. S., Kothari, D. C., Tewari, R.: Nano-composite soda lime silicate glass prepared using silver ion exchange, J. Non-Cryst. Solids, 355, (2009), 1246-1251.
  • [18] Wang, P. W., Hsu, J.-C., Hwa, L.-G.: Metallic phase formation in oxide films, J. Non-Cryst. Solids, 354, (2008), 1256-1262.
  • [19] Roy, A., Jain, H., Roy, S., Chakravorty, D.: The development of nanosize silver particles in an ion exchanged silicate glass matrix, J. Non-Cryst. Solids, 222, (1997), 102-112.
  • [20] Wang, P. W.: Formation of silver colloids in silver ion-exchanged soda-lime glasses during annealing, Appl. Surf. Sci., 120, (1997), 291-298.
  • [21] Chen, W., Zhang, J.: Ag nanoparticles hosted in monolithic mesoporous silica by thermal decomposition method, Scripta Mater., 49, (2003), 321-325.
  • [22] Cai, W., Tan, M., Wang, G., Zhang, L.: Reversible transition between transparency and opacity for the porous silica host dispersed with silver nanometer particles within its pores, Appl. Phys. Lett., 69, (1996), 2980.
  • [23] Mohan, S., Jose, G.: Stability of core-shell nanoparticles formed in a dielectric medium, Appl. Phys. Lett., 91, (2007), 253107.
  • [24] Gonella, F., Cattaruzza, E., Quaranta, A., Ali, S., Argiolas, N., Sada, C.: Diffusion behavior of transition metals in field-assisted ion-exchanged glasses, Solid State Ionics, 177, (2006), 3151-3155.
  • [25] Cattaruzza, E., Battaglin, G., Gonella, F., Alib, S., Sada, C., Quaranta, A.: Characterization of silicate glasses doped with gold by solid-state field-assisted ion exchange, Mater. Sci. Eng. B, 149, (2008), 195-199.
  • [26] Oven, R., Yin, M., Davies, P. A.: Characterization of planar optical waveguides formed by copper–sodium, electric field assisted, ion exchange in glass, J. Phys. D: Appl. Phys., 37, (2004), 2207-2215.
  • [27] Gonella, F., Canton, P., Cattaruzza, E., Quaranta, A., Sada, C., Vomiero, A.: Field-assisted ion diffusion of transition metals for the synthesis of nanocomposite silicate glasses, Mater. Sci. Eng. C, 26, (2006), 1087-1091.
  • [28] U.S. patent nr US 2003/0172676 A1, Process of colouring of the glass materials.
  • [29] X. Du, Y. Jiang, B. Xie, Y. Li, J. Mater. Appl., 3 (2014) 17-24.
  • [30] Lee, K.-Ch., Lin, S.-J., Lin, Ch-H., Tsai, Ch-S., Lu, Y-J.: Size effect of Ag nanoparticles on surface plasmon resonance, Surface and Coatings Technol., 202, (2008), 5339-5342.
  • [31] Anker, J. N., Hall, W. P., Lyandres, O., Shah, N. C., Zhao, J., Van Duyne, R. P.: Biosensing with plasmonic nanosensors., Nat. Mater., 7, (2008), 442-453.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-125b8eec-e4d3-4c19-b7d4-9d265669f473
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.