Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper reviews the effect of changing the breadth of a tugboat before and after production on ship stability. The numerical simulation method (maxurf stability) is applied. Likewise, another approach uses the Benjamin Spence (integrator) method. The standard used is IMO. Several limits become parameters for assessing the increase and decrease in ship stability. Several ship load cases are simulated to produce righting arm curves. The construction of a tugboat with a length of 28 meters is the object of this research as a case study. We compared the righting arm curve from the Maxurf stability analysis with Benjamin Spence's analysis to confirm the accuracy of the calculation results. Both methods show a significant influence regarding changes in the breadth of the tugboat. The produced righting arm curve consistently shows changes in the stability and performance of the ship. There is a reduction in the area under the GZ curve. The IMO provides three of the five standards and recommendations regarding the area under the GZ curve. The reduction of the area under the GZ curve is 17~22% for the Benjamin Spence method and 12~18% for the Maxurf stability. This percentage applies to all load-case simulations. This research contributes to providing an understanding of the effect of changes in ship width on decreasing stability.
Rocznik
Tom
Strony
905--914
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
autor
- Institut Teknologi Kalimantan, Balikpapan, Indonesia
autor
- Institut Teknologi Kalimantan, Balikpapan, Indonesia
autor
- Institut Teknologi Kalimantan, Balikpapan, Indonesia
autor
- Institut Teknologi Kalimantan, Balikpapan, Indonesia
autor
- Institut Teknologi Kalimantan, Balikpapan, Indonesia
autor
- Institut Teknologi Kalimantan, Balikpapan, Indonesia
autor
- Hasanuddin University, Gowa, South Sulawesi, Indonesia
Bibliografia
- [1] Langxiong Gan, L., et al., “Ship path planning based on safety potential field in inland rivers,” Ocean Eng., vol. 260, no. 111928, pp. 1–9, 2022, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0029801822012665.
- [2] Rui Li, W.H., et al., “Development of multi-functional integrated design system for ship block lifting process,” Int. J. Nav. Archit. Ocean Eng., vol. 16, no. 100593, pp. 1–11, 2024, [Online]. Available: https://pdf.sciencedirectassets.com/314106/1-s2.0-S2092678223X00028/1-s2.0-S2092678224000128/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjELb%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJHMEUCIQCg%2BE9%2FYRGuF0Oh8FRV0xtHq4wHNvOfksybX9a0VBzEOAIgLEhxpbRW.
- [3] Aguiari, M., M. Gaiotti, and C. M. Rizzo. “Ship weight reduction by parametric design of hull scantling,” Ocean Eng., vol. 263, no. 112370, pp. 1–15, 2022, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0029801822016626.
- [4] Wang, L., et al., “Ship docking and undocking control with adaptive-mutation beetle swarm prediction algorithm,” Ocean Eng., vol. 251, no. 111021, pp. 1–22, 2022, [Online]. Available: https://www.sciencedirect. com/science/article/abs/pii/S0029801822004425.
- [5] Alamsyah, C. S. Kala, and A. I. Wulandari, “The Analysis of Engine Room Vibration of Tugboat 24 M,” Marit. Park J. Marit. Technol. Soc., vol. 1, no. 3, pp. 93–101, 2022, [Online]. Available: https://journal.unhas.ac.id/index.php/maritimepark/article/view/23608.
- [6] Hu, H., et al., “Study on the flooding characteristics of damaged barges with dynamic explosive deformation,” Int. J. Nav. Archit. Ocean Eng., vol. 16, no. 100589, pp. 1–15, 2024, [Online]. Available: https://www.sciencedirect. com/science/article/pii/S2092678224000086.
- [7] Alamsyah, et al., “The Fatigue Life Assessment of Sideboard on Deck Barge Using Finite Element Methods,” J. Ind. Res. an Innov., vol. 16, no. 1, pp. 1–10, 2022, [Online]. Available: https://ejournal.brin.go.id/MIPI/article/view/1292.
- [8] Alamsyah, et al., “Numerical Investigation of the Laying of Airbag Arrangements on Launching Barges,” Int. J. Mar. Eng. Innov. Res., vol. 8, no. 2, pp. 202–212, 2023, [Online]. Available: https://iptek.its.ac.id/ index.php/ijmeir/article/view/16737.
- [9] Alamsyah, et al., “An Analyze of Fatigue Life Construction of Lifting Poonton for Small Vessel,” Adv. Sci. Technol., vol. 104, pp. 95–101, 2021, [Online]. Available: https://www.scientific.net/AST.104.95.
- [10] Nguyen, T.T., et al., “4DOF Maneuvering Motion of a Container Ship in Shallow Water Based on CFD Approach,” Preprints.org, pp. 1–18, 2024, doi: doi:10.20944/preprints202404.1368.v1.
- [11] Kong, M.C., and M. I. Roh, “A Method for Implementing a Ship Navigation Simulator for the Generation and Utilization of Virtual Data,” Int. J. Nav. Archit. Ocean Eng., no. 100604, 2024, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2092678224000232?ref=pdf_download&fr=RR-2&rr=89ccd6adea955f5f.
- [12] Baso, S., et al., “Experimental Investigation of Added Resistance of a Ship using a Hydroelastic Body in Waves,” Int. J. Technol., vol. 13, no. 2, pp. 332–344, 2022, [Online]. Available: https://ijtech.eng.ui.ac.id/article/view/4904.
- [13] Paroka, D., A. H. Muhammad, and S. Rahman, “Safety of an Indonesian ro-ro ferry with different weight distribution on vehicle deck,” 2022, [Online]. Available: https://pubs.aip.org/aip/acp/article-abstract/2543/1/080009/2828934/Safety-of-an-Indonesian-ro-ro-ferry-with-different.
- [14] Alamsyah, Z. Zulkarnaen, and Suardi, “The Stability Analyze of KM. Rejeki Baru Kharisma of Tarakan–Tanjung Selor Route,” TEKNIK, vol. 42, no. 1, pp. 52–62, 2021, [Online]. Available: https://ejournal.undip.ac.id/ index.php/teknik/article/view/31283;
- [15] Kim, J.H., et al., “Limit Protection Systems for Safety Operational Envelope of Submarine,” Int. J. Nav. Archit. Ocean Eng., no. 100598, 2024, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2092678224000177.
- [16] Woo, D., and N. K. Im, “A Methodology for Simply Evaluating the Safety of a Passenger Ship Stability Using the Index for the Intact Stability Appraisal Module,” Sensors, no. 1938, pp. 1–15, 2022, [Online]. Available: https://www.mdpi.com/1424-8220/22/5/1938.
- [17] Negi, A., S. Ganesan T., and A. Ajithkumar, “On Prepration Of Operation Measures Under The Second Generation Of Intact Stability Criteria,” 2023, [Online]. Available: https://www.researchgate.net/publication/377334701_ON_PREPRATION_OF_OPERATION_MEASURES_UNDER_THE_SECOND_GENERATION_OF_INTACT_STABILITY_CRITERIA.
- [18] IMO MSC.1/Circ.1627, Interim Guidelines on the Second Generation Intact Stability Criteria. London, 2020.
- [19] Petacco, N., G. Petkovic, and P. Gualeni, “An insight on the post-processing procedure of the Direct Stability Assessment within SGISC,” Ocean Eng., vol. 305, no. 117982, pp. 1–14, 2024, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0029801819303257.
- [20] Bulian, G., and A. Francescutto, “Level 1 vulnerability criterion for the dead ship condition: A practical methodology for embedding operational limitations,” Ocean Eng., vol. 272, no. 113868, pp. 1–12, 2023, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0029801823002524.
- [21] Begović, E., et al., “Simplified operational guidance for second generation intact stability criteria,” Ocean Eng., vol. 270, no. 113583, 2023, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0029801822028669.
- [22] Negi, A., and S. Ganesan T., “Assessment of Pure Loss of Stability Failure Mode for 2nd Generation Intact Stability,” 2019.
- [23] Guo, Z., et al., “Research on safety evaluation and weather routing optimization of ship based on roll dynamics and improved A* algorithm,” Int. J. Nav. Archit. Ocean Eng., no. 100605, 2024, doi: https://doi.org/10.1016/j.ijnaoe.2024.100605.
- [24] Paroka, D., et al., “Alternative Method for Stability Assessment of Indonesian Traditional Wooden Boats,” in IOP Conference Series: Earth and Environmental Science, 2022, p. 012020, [Online]. Available: https://iopscience.iop.org/article/10.1088/1755-1315/972/1/012020/meta.
- [25] Paroka, D., et al., “Operational limitation of Indonesian traditional wooden boat in the framework of second generation intact stability criteria,” in IOP Conference Series: Earth and Environmental Science, 2021, p. 012064, [Online]. Available: https://iopscience.iop.org/article/10.1088/1755-1315/649/1/012064/meta.
- [26] Asis, M.A., et al., “Experimental Study on Weather Criterion Applied to South Sulawesi Traditional Wooden Boats,” in The 5th International Conference on Marine Technology (SENTA 2020), 2021, pp. 1–11.
- [27] Paroka, D., et al., “Vulnerability of Ship with a Large Breadth to Draught Ratio Against Excessive Acceleration Criteria,” in IOP Conference Series: Earth and Environmental Science, 2023, p. 012008, [Online]. Available: https://iopscience.iop.org/article/10.1088/1755-1315/1166/1/012008/meta.
- [28] Alamsyah, et al., “Design of Fishing Vessel of Catamaran Type In Waterways of East Kalimantan (40 GT),” in Journal of Physics: Conference Series, 2021, p. 012014, [Online]. Available: https://iopscience.iop.org/article/ 10.1088/1742-6596/1726/1/012014/meta.
- [29] Pawara, M.U., et al., “Bilge System Design on 500 GT Ferry for Bulukumba–Selayar Route,” in IOP Conference Series: Earth and Environmental Science, 2021, p. 012010, [Online]. Available: https://iopscience.iop.org/article/10.1088/1755-1315/921/1/012010/meta.
- [30] Alamsyah, et al., “Stability Study of Water Ambulance in East Kalimantan Inland Waterways,” Wave J. Ilm. Teknol. Marit., vol. 17, no. 1, pp. 1–10, 2023, [Online]. Available: https://ejournal.brin.go.id/jurnalwave/article/view/186.
- [31] Younis, G., et al., “Sensitivity Analyses of Intact and Damage Stability Properties to Passenger Ship’s Dimensions and Proportions,” PORT-SAID Eng. Res. J., vol. 23, no. 1, pp. 65–73, 2019, [Online]. Available: https://www.semanticscholar.org/paper/Sensitivity-Analyses-of-Intact-and-Damage-Stability-Younis-Abdelghany/65f404927affe95b1be199be570381d9235db283.
- [32] Guan, G., et al., “Automatic optimal design of self-righting deck of USV based on combined optimization strategy,” Ocean Eng., vol. 217, no. 107824, 2020, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0029801820307988.
- [33] Anggara, S., et al., “The Application of 2nd Generation Intact Stability Criteria to Ship Operating in Indonesia Waterway: Pureloss Stability,” in IOP Conf. Series: Materials Science and Engineering, 2021, p. 1052, [Online]. Available: https://iopscience.iop.org/article/10.1088/1757-899X/1052/1/012050/pdf.
- [34] Benjamin, L., Contributions to the solution of the problem of stability. Tr. of Inst. Nav. Arch, 1884.
- [35] Spence, J.C., The Graphic calculation of the data depending on the form of ships, required for determining their stability. Tr. of Inst. Nav. Arch, 1884.
- [36] Band, E., edited by E. Foerster, Hilfsbuch für den Schiffbau. 1928.
- [37] Dudebout, P.e., “Stability of Ship,” in Architecture navale : théorie du navire : I, 1890, p. 123.
- [38] Yılmaz, H., and A. Kükner “Evaluation of cross curves of fishing vessels at the preliminary design stage,” Ocean Eng., vol. 26, no. 10, pp. 979–990, 1999, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0029801898000389.
- [39] González, M.M., et al., “Fishing vessel stability assessment system,” Ocean Eng., vol. 41, no. Februari, pp. 67–78, 2012, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0029801811002988.
- [40] Mantari, J.L., S.R.e. Silva, and G.C. Soares “Intact stability of fishing vessels under combined action of fishing gear, beam waves and wind,” Ocean Eng., vol. 38, no. 17–18, pp. 1989–1999, 2011, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0029801811002125.
- [41] Masamoto, S., et al., “Experimental study of the water on deck effects on the transverse stability of a fishing vessel running in stern quartering seas,” Ocean Eng., vol. 289, no. 116289, 2023, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0029801823026732.
- [42] Szozda, Z., and P. Krata, “Towards evaluation of the second generation intact stability criteria - Examination of a fishing vessel vulnerability to surf-riding, based on historical capsizing,” Ocean Eng., vol. 248, no. 110796, 2022, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0029801822002426.
- [43] Santullano, F.M.A., and A.S. Iglesias, “Stability, safety and operability of small fishing vessels,” Ocean Eng., vol. 79, no. March, pp. 81–91, 2014, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0029801814000201.
- [44] Caamaño, L.S., M. M. González, and V.D. Casas, “On the feasibility of a real time stability assessment for fishing vessels,” Ocean Eng., vol. 159, no. July, pp. 76–87, 2018, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0029801818304141.
- [45] Caamaño, L.S., et al., “Evaluation of onboard stability assessment techniques under real operational conditions,” Ocean Eng., vol. 258, no. 111841, 2022, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0029801822011842.
- [46] Davis, B., B. Colbourne, and D. Molyneux, “Analysis of fishing vessel capsizing causes and links to operator stability training,” Saferty Sci., vol. 118, no. October, pp. 355–363, 2019, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0925753519300165.
Uwagi
1. Pełne imiona podano na stronie internetowej czasopisma w "Author index" lub "Authors in other databases."
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1193212a-100b-4f80-981a-e656c7d82ceb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.