PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mining energy consumption as a function of ore grade decline: The case of lead and zinc

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Demand for raw materials is increasing exponentially. To satisfy that demand, more minerals need to be mined from the Earth's crust. As a result, minerals are being exhausted, and ore grades decline. Lower ore grade mines also mean more energy, which in turn entails fossil fuel emissions and more climate change. This paper estimates the specific energy for the beneficiation process of metals lead and zinc as case studies. The evaluation is performed with specialized software, HSC Chemistry which assesses the specific energy for every stage: comminution, flotation, and refining. Different scenarios have been established to simulate the behavior of a mine when it approaches depletion. Preliminary results show that energy consumption for lead would increase by five times when compared to the current situation if ore grades decrease until the level of tailings, while for zinc by almost two.
Słowa kluczowe
Rocznik
Strony
109--121
Opis fizyczny
Bibliogr. 69 poz.
Twórcy
  • CIRCE Institute e Universidad de Zaragoza, Spain
  • CIRCE Institute e Universidad de Zaragoza, Spain
  • Departamento de Ingeniería Mecánica, Escuela Politécnica Nacional de Ecuador, Ecuador
  • CIRCE Institute e Universidad de Zaragoza, Spain
Bibliografia
  • [1] Charles V, Linda S. Human Behavior and Environmental Sustainability: Problems, Driving Forces, and Research Topics. J Soc Issues 2007;63(1):1-19.
  • [2] Ikhlayel M. An integrated approach to establish e-waste management systems for developing countries. J Clean Prod 2018;170:119-30.
  • [3] Hischier R, Wa P, Gauglhofer J. “Does WEEE recycling make sense from an environmental perspective ? The environmental impacts of the Swiss take-back and recycling systems for waste electrical and electronic equipment ( WEEE ). Environ Impact Assess Rev 2005;25:525-39.
  • [4] Calvo G, Valero AA, Valero AA. Thermodynamic Approach to Evaluate the Criticality of Raw Materials and Its Application through aMaterial Flow Analysis in Europe. J Ind Ecol 2017;22(4):839-52.
  • [5] Calvo G, Mudd G, Valero A, Valero A. Decreasing Ore Grades in Global Metallic Mining: A Theoretical Issue or a Global Reality? Resources 2016;5(4):36.
  • [6] Camizuli E, et al. Trace metals from historical mining sites and past metallurgical activity remain bioavailable to wildlife today. Sci Rep 2018;8(34-36):1-11.
  • [7] Viederman S, A Sustainable Society “. What Is It? How Do We Get There? The George Wright Forum 1993;10(4):34-47. New York.
  • [8] Jose-Luis P, et al. The energy needed to concentrate minerals from common rocks: The case of copper ore. Energy 2019; 181(August):494-503.
  • [9] Northey S, Mohr S, Mudd GM, Weng Z, Giurco D. Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resour Conserv Recycl 2014;83:190-201.
  • [10] Christie T, Brathwaite B. “Mineral Commodity Report 6 d Lead and Zinc. New Zeal Min 1995;16:22-30.
  • [11] Thornton I, Rautiu R, Brush SM. “Lead: The facts. Properties of Lead,” Lead Facts. 2001. p. 6-14.
  • [12] Gregurek D, Peng Z, Wenzl C. Lead and Zinc Metallurgy. Jom 2015;67(9):1986-7.
  • [13] ILZSG. International Lead and Zinc Study Group. Press Release Int Organ 2018;April:4.
  • [14] Bernhardt D, Reilly II JF. USGS: Mineral Commodity Summaries. 2019.
  • [15] Garside M. Major countries in lead mine production worldwide from 2010 to 2019 [Online]. Available:. February, 2020. https://www.statista.com/. [Accessed 2 April 2020].
  • [16] Mohr S, Giurco D, Retamal M, Mason L, Mudd G. Global Projection of Lead-Zinc Supply from Known Resources. Resources 2018;7(1):17.
  • [17] Sverdrup H, Ragnarsdottir KV. Natural resources in a planetary perspective. no. 2 Geochemical Perspect 2014;vol. 3:129-341.
  • [18] Anyadike N. Zinc Recycling. vol. Zinc essen Int Zinc Assoc 2011:2.
  • [19] Garside M. Major countries in worldwide zinc mine production from 2010 to 2019 [Online]. Available:. February, 2020. https://www.statista.com/. [Accessed 2 April 2020].
  • [20] Abadías A, et al. Simulation-based exergy, thermo-economic and environmental footprint analysis of primary copper production. September 2018 Miner Eng 2019;131:51-65.
  • [21] Palacios JL, Abadias A, Valero A, Valero A, Reuter MA. Producing metals from common rocks: The case of gold. Resour Conserv Recycl 2019;148(April):23-35.
  • [22] Palacios JL, Fernandes I, Abadias A, Valero A, Valero A, Reuter MA. Avoided energy cost of producing minerals: The case of iron ore. Energy Reports 2019;5:364-74.
  • [23] Arribas A, Moro C. Mineralizaciones españolas de Pb-Zn asociadas a fenómenos cársticos en rocas triásicas y jurásicas. October 11th Stvdia Geológica Salmant 1985;XXI:125-51.
  • [24] Vicencio C, Alday R, Rojas R, Pizarro N, Soublette A. “Zinc y Plomo,” Chile, Universidad Católica del Norte. Facultad de Ingeniería y Ciencias Geológicas. Departamento de Ingeniería y Sistemas de Computación; 2008.
  • [25] Outotec. OutotecHSC chemistry software [Online]. Available:. 2020. https://www.outotec.com/. [Accessed 4 December 2019].
  • [26] Arne D, Geo P, Mcgarry L, Geo P, Mcgarry L. “NI 43-101 Technical Report on the Macmillan Pass Zinc-Lead-Silver Project , Watson Lake and Mayo Mining Districts. Yukon Territory: Canada; 2018.
  • [27] Maynard R, et al. Technical Report for the Platosa Silver- Lead-Zinc Mine, Mexico. 2018. p. 150.
  • [28] Stephenson PR, Smith HA, Riles A, Molavi M. Technical Report for Ying Gold- Silver-Lead-Zinc Property , Henan Province , ChinaJune. AMC Min. Consult. LTd; 2012. p. 221.
  • [29] Metso. Basics in minerals processing. 10th ed. Metso Corporation; 2015.
  • [30] Rankin W. Minerals, Metals and Sustainability. In: Meeting Future Material Needs; 2011.
  • [31] Napier-Munn T, Barry AW. Mineral Processing Technology. An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery. October. 2006.
  • [32] Graf GG. “Zinc Ullmann's encyclopedia. Encycl Ind Chem 2005:23.
  • [33] Sutherland CA, Milner EF, Kerby RC, Herbert T, Melin A, Bolt HM. “Lead Ullmann's encyclopedia. Encycl Ind Chem 2006:48.
  • [34] Valero A, Valero A. Thanatia: the destiny of the Earth's mineral resources. Zaragoza: World Scientific Publishing; 2014.
  • [35] Lenzen M. Life cycle energy and greenhouse gas emissions of nuclear energy: A review. Energy Convers Manag 2008; 49(8):2178-99.
  • [36] Sinclair RJ. The Extractive Metallurgy of Zinc. Australas Inst Min Metall 2005;13:297.
  • [37] Thornton I, Rautiu R, Brush S. “Lead industry profile,” Lead Facts. Chapter 4. 2001. p. 47-70.
  • [38] Flores Briceño R, Castillo Espinosa JR. Flotación de Plomo Y Zinc, Universidad Nacional Jose Faustino Sanchez Carrion, Perú, Ingeniería Química y Metalurgia. Concentración de Minerales II 2013.
  • [39] Valero A, Valero A. “Exergy of comminution and the Thanatia Earth's model. Energy 2012;44(1):1085-93.
  • [40] Skarin OI, Tikhonov NO. Calculation of the Required Semiautogenous Mill Power based on the Bond Work Indexes. Eurasian Min 2015;1:5-8. Technology and technic of ore preparation processes.
  • [41] Rowland C, Kjos D. Rod and ball mills, Mineral Processing Plant Design. New York: AIMME; 1978.
  • [42] King RP. Modeling and simulation of mineral processing systems. UTAH: Reed Educational and Professional Publishing Ltd A; 2001.
  • [43] Rowland CA. Using the Bond work index to measure operating comminution efficiency. Miner Metall Process 1999; 15(4):32-6.
  • [44] Luo B, et al. Characterization of sulfide film on smithsonite surface during sulfidation processing and its response to flotation performance. Powder Technol 2019;351:144-52.
  • [45] Shardt YAW, Brooks K. Automated System Identification in Mineral Processing Industries: A Case Study using the Zinc Flotation Cell. IFAC-PapersOnLine 2018;51(18):132-7.
  • [46] Krolak T, Palmer K, Lacouture B, Paley N. NI 43-101 Technical Report. Alaska, USA: Red Dog Mine; 2017. Anchorage, AK USA.
  • [48] Dunne RC, Lane GS, Richmond GD, Dioses J. Interpretation of flotation data for the design of process plants. Australas Inst Min Metall 2002;(January):28.
  • [49] Sinclair RJ. Chapter 7. Direct Smelting processes. In: The Extractive Metallurgy of Lead. 15. Australas. Inst. Min. Metall.; 2009. p. 99-127.
  • [50] Michaud D. “Table of Bond Work Index by Minerals,” 911 Metallurgist [Online]. Available:. 2015. https://www.911metallurgist.com/blog/table-of-bond-work-index-byminerals. [Accessed 19 June 2015].
  • [51] Siemens AG. Maximum productivity with maximum safety. 2016. p. 16. www.siemens.com/mining, no. VRMI-B10009-00-7600.
  • [52] Atchireddi S, Faria E. Achievement of high energy efficiency in grinding mills at Santa Rita. no. January. In: 45th Annu. Meet. Can. Miner. Process. 22-24; 2013. p. 97-110.
  • [53] Sehlotho N, Sindane Z, Bryson M, Lindvelt L, Sehlotho L. Flowsheet development for selective Cu-Pb-Zn recovery at Rosh Pinah concentrator. Miner Eng Jun. 2018;122:10-6.
  • [54] Sinclair RJ. Chapter 16. Energy Consumption. In: The Extractive Metallurgy of Lead. vol. 15; 2009. p. 259-68.
  • [55] Outotec, “OUTOTEC FLOTATION TANKCELL ® e-SERIES BENEFITS,” Sustainable use of Earth's natural resources. 2016. p. 4.
  • [56] Bustamante Rua MO, Restrepo Baena ÓJ, Gaviria Cartagena AC. Pirometalurgia. Univ Nac Colomb 2008:109. Programa a.
  • [57] Berdowski J, et al. “Lead production,” EMEP/EEA Emiss. Invent Guideb 2009 2009:24.
  • [58] Nyberg J, Kortela U, Jämsä-Jounela S-L, Ylinen R. Characterisation and control of the zinc roasting process. Faculty of Technology, Oulu University; 2004.
  • [59] Napo D, Ntuli F, Muzenda E, Mollagee M. Process Intensification of Zinc Oxide Leaching Process Using Sulphuric Acid. Lect Notes Eng Comput Sci 2011;2(2194): 623-7.
  • [60] Gupta TK, Mukherjee CK. Hydrometallurgy in Extraction Processes, Volume IIvol. 2. CRC Press; 1990. p. 39-78.
  • [61] Nayak S, Charan Sabat K. Principles of extractive metallurgy. vol. 3rd semest, no. Lectures note Dep Metall Mater Eng Parala Maharaja Eng Coll Berhampur 2009:98.
  • [62] Prior T, Daly J, Mason L, Giurco D. Resourcing the future: Using foresight in resource governance. Geoforum 2013;44: 316-28.
  • [63] [Online]. Available: USA electricity prices. Electricity prices for households; 2020. https://www.globalpetrolprices.com/. [Accessed 26 February 2021].
  • [65] Dones R, et al. Life Cycle Inventories of Energy Systems: Results for Current Systems in Switzerland and other UCTE Countries. Swiss Cent. Life Cycle Invent. 2007;2(5): 185.
  • [66] Poder calorífico (q) de diversas sustancias Producto,” Minist. Trab. y asuntos Soc., no. Instituto Nacional de seguridad e higiene en el trabajo, p. 3.
  • [67] Hofstrand. Liquid Fuel Measurements and Conversions. Ag Decis Maker Iowa State Univ 2008;C6-87:4. October.
  • [68] Qi C, Ye L, Ma X, Yang D, Hong J. Life cycle assessment of the hydrometallurgical zinc production chain in China. J Clean Prod 2017;156:451-8.
  • [69] Norgate TE, Jahanshahi S, Rankin WJ. Assessing the environmental impact of metal production processes. J Clean Prod 2007;15(8-9):838-48.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-106e8686-60eb-45e8-9b24-8a9a51cbb22d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.