PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of glucose concentration and culture substrate on HUVECs viability in in vitro cultures: A literature review and own results

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Some clinical studies reported that glucose variability increased the risk of developing diabetes-related late complications more than constant hyperglycemia, while others claimed that the evidence was not strong enough to support such a conclusion. A few in vitro studies investigated the effect of constantly high or variable glucose levels (VGLs) on endothelial cells (EC). The first aim of this work was to review these studies and demonstrate that most of them support the notion that viability and other metabolic parameters of EC deteriorate faster in cell cultures with VGLs than in cultures with stable normal or high glucose concentration. The second aim was to verify whether the effect of glucose concentration is the same regardless of other culture conditions such as the substrate on which the cells are grown. We cultured Human Umbilical Vein Endothelial Cells (HUVECs) for 7 or 14 days in constant (5 mM or 20 mM) or variable (switching between 5 mM and 20 mM once a day) glucose concentration in culture plates, which were either not-covered with any additional substrate or were covered with fibronectin or gelatin. We assessed the cell viability using a propidium iodide test. The ANOVA revealed that HUVECs viability was affected not only by glucose concentration and duration of the cell culturing but also by the type of substrate and interactions of these three factors. In conclusion, the effect of glucose level on EC viability should not be analyzed in isolation from other culture conditions that may amplify or attenuate this effect.
Twórcy
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Trojdena Street, 02-109 Warsaw, Poland
autor
  • Nalecz Institute of Biocybernetics and Biomedical Engineering PAS, Warsaw, Poland
  • Nalecz Institute of Biocybernetics and Biomedical Engineering PAS, Warsaw, Poland
  • Nalecz Institute of Biocybernetics and Biomedical Engineering PAS, Warsaw, Poland
  • Nalecz Institute of Biocybernetics and Biomedical Engineering PAS, Warsaw, Poland
Bibliografia
  • [1] Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, et al. The vascular endothelium and human diseases. Int J Biol Sci 2013;9(10):1057–69. https://doi.org/10.7150/ijbs.7502.
  • [2] Buradi A, Mahalingam A. Impact of coronary tortuosity on the artery hemodynamics. Biocybern Biomed Eng 2020;40 (1):126–47. https://doi.org/10.1016/j.bbe.2019.02.005.
  • [3] International Diabetes Federation. IDF Diabetes Atlas. 9th edn. Brussels, Belgium: International Diabetes Federation; 2019.
  • [4] Fayfman M, Pasquel FJ, Umpierrez GE. Management of Hyperglycemic Crises: Diabetic ketoacidosis and hyperglycemic hyperosmolar state. Med Clin North Am 2017;101(3):587–606. https://doi.org/10.1016/j. Mcna.2016.12.011.
  • [5] Kitabchi AE, Umpierrez GE, Miles JM, Fisher JN. Hyperglycemic crises in adult patients with diabetes. Diabetes Care 2009;32(7):1335–43. https://doi.org/10.2337/ dc09-9032.
  • [6] Karslioglu French E, Donihi AC, Korytkowski MT. Diabetic ketoacidosis and hyperosmolar hyperglycemic syndrome: review of acute decompensated diabetes in adult patients. BMJ 2019;365. https://doi.org/10.1136/bmj.l1114 l1114.
  • [7] Ciechanowska A, Ladyzynski P, Wojcicki JM, Sabalinska S, Krzymien J, Pulawska E, et al. Microdialysis monitoring of glucose, lactate, glycerol, and pyruvate in patients with diabetic ketoacidosis. Int J Artif Organs 2013;36(12):869–77. https://doi.org/10.5301/ijao.5000265.
  • [8] Nirala N, Periyasamy R, Singh BK, Kumar A. Detection of type-2 diabetes using characteristics of toe photoplethysmogram by applying support vector-machine. Biocybern Biomed Eng 2019;39(1):38–51. https://doi.org/ 10.1016/j.bbe.2018.09.007.
  • [9] Leon BM, Maddox TM. Diabetes and cardiovascular disease: epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes 2015;6(13):1246–58. https://doi.org/10.4239/wjd.v6.i13.1246.
  • [10] Mitchell S, Malanda B, Damasceno A, Eckel RH, Gaita D, Kotseva K, et al. A roadmap on the prevention of cardiovascular disease among people living with diabetes. Glob Heart 2019;14(3):215. https://doi.org/10.1016/j. Gheart.2019.07.009.
  • [11] Mudau M, Genis A, Lochner A, Strijdom H. Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc J Afr 2012;23(4):222–31. https://doi.org/10.5830/ CVJA-2011-068.
  • [12] Ali H. SCUBE2, vascular endothelium, and vascular complications: a systematic review. Biomed Pharmacother 2020;127:110129. https://doi.org/10.1016/j. Biopha.2020.110129.
  • [13] Eelen G, de Zeeuw P, Treps L, Harjes U, Wong BW, Carmeliet P. Endothelial cell metabolism. Physiol Rev 2018;98(1):3–58. https://doi.org/10.1152/physrev.00001.2017.
  • [14] de Zeeuw P, Wong BW, Carmeliet P. Metabolic adaptations in diabetic endothelial cells. Circ J 2015;79(5):934–41. https://doi.org/10.1253/circj.CJ-15-0230.
  • [15] Yu CH, Suriguga, Gong M, Liu WJ, Cui NX, Wang Y, et al. High glucose induced endothelial to mesenchymal transition in human umbilical vein endothelial cell. Exp Mol Pathol 2017;102(3):377–83. https://doi.org/10.1016/j.yexmp.2017.03.007.
  • [16] Artwohl M, Brunmair B, Fürnsinn C, Hölzenbein T, Rainer G, Freudenthaler A, et al. Insulin does not regulate glucose transport and metabolism in human endothelium. Eur J Clin Invest 2007;37(8):643–50. https://doi.org/10.1111/j.1365-2362.2007.01838.x.
  • [17] Meza CA, La Favor JD, Kim DH, Hickner RC. Endothelial dysfunction: is there a hyperglycemia-induced imbalance of NOX and NOS? Int J Mol Sci 2019;20(15):3775. https://doi.org/10.3390/ijms20153775.
  • [18] Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 2018;9(2):119. https://doi.org/10.1038/s41419-017-0135-z.
  • [19] Gora IM, Ciechanowska A, Ladyzynski P. NLRP3 Inflammasome at the interface of inflammation, endothelial dysfunction, and type 2 diabetes. Cells 2021;10 (2):314. https://doi.org/10.3390/cells10020314.
  • [20] Clyne AM. Endothelial response to glucose: dysfunction, metabolism, and transport. Biochem Soc Trans 2021;49 (1):313–25. https://doi.org/10.1042/BST20200611.
  • [21] Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol J-P, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 2006;295(14):1681. https://doi.org/10.1001/jama.295.14.1681.
  • [22] Saisho Y. Glycemic variability and oxidative stress: a link between diabetes and cardiovascular disease? Int J Mol Sci 2014;15(10):18381–406. https://doi.org/10.3390/ ijms151018381.
  • [23] Zhang XG, Zhang YQ, Zhao DK, Wu JX, Zhao J, Jiao XM, et al. Relationship between blood glucose fluctuation and macrovascular endothelial dysfunction in type 2 diabetic patients with coronary heart disease. Eur Rev Med Pharmacol Sci 2014;18(23):3593–600.
  • [24] Jung HS. Clinical implications of glucose variability: chronic complications of diabetes. Endocrinol Metab (Seoul) 2015;30(2):167–74. https://doi.org/10.3803/EnM.2015.30.2.167.
  • [25] Xia J, Yin C. Glucose variability and coronary artery disease. Heart Lung Circ 2019;28(4):553–9. https://doi.org/10.1016/j.hlc.2018.10.019.
  • [26] Lachin JM, Genuth S, Nathan DM, Zinman B, Rutledge BN, DCCT/EDIC Research Group. Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial–revisited. Diabetes 2008;57 (4):995–1001. https://doi.org/10.2337/db07-1618.
  • [27] Chatziralli IP. The Role of glycemic control and variability in diabetic retinopathy. Diabetes Ther 2018;9(1):431–4. https://doi.org/10.1007/s13300-017-0345-5.
  • [28] Tylee TS, Trence DL. Glycemic variability: looking beyond the A1c. Diabetes Spectrum 2012;25(3):149–53. https://doi.org/10.2337/diaspect.25.3.149.
  • [29] Danne T, Nimri R, Battelino T, Bergenstal RM, Close KL, DeVries JH, et al. International consensus on use of continuous glucose monitoring. Diabetes Care 2017;40 (12):1631–40. https://doi.org/10.2337/dc17-1600.
  • [30] Dandona P. Minimizing glycemic fluctuations in patients with type 2 diabetes: approaches and importance. Diabetes Technol Ther 2017;19(9):498–506. https://doi.org/10.1089/dia.2016.0372.
  • [31] Umpierrez GE, Kovatchev BP. Glycemic variability: how to measure and its clinical implication for type 2 diabetes. Am J Med Sci 2018;356(6):518–27. https://doi.org/10.1016/j.amjms.2018.09.010.
  • [32] Ladyzynski P, Foltynski P, Bak MI, Sabalinska S, Krzymien J, Kawiak J. Validation of a hemoglobin A1c model in patients with type 1 and type 2 diabetes and its use to go beyond the averaged relationship of hemoglobin A1c and mean glucose level. J Transl Med 2014;10(12):328. https://doi.org/10.1186/ s12967-014-0328-5.
  • [33] Kilpatrick ES, Rigby AS, Atkin SL. The effect of glucose variability on the risk of microvascular complications in type 1 diabetes. Diabetes Care 2006;29(7):1486–90. https://doi.org/10.2337/dc06-0293.
  • [34] Kilpatrick ES, Rigby AS, Atkin S. Effect of glucose variability on the long-term risk of microvascular complications in type 1 diabetes. Diabetes Care 2009;32(10):1901–3. https://doi.org/10.2337/dc09-0109.
  • [35] Siegelaar SE, Kilpatrick ES, Rigby AS, Atkin SL, Hoekstra JB, Devries JH. Glucose variability does not contribute to the development of peripheral and autonomic neuropathy in type 1 diabetes: data from the DCCT. Diabetologia 2009;52 (10):2229–32. https://doi.org/10.1007/s00125-009-1473-x.
  • [36] Ceriello A, Kilpatrick ES. Glycemic variability: both sides of the story. Diabetes Care 2013;36(Suppl 2):S272–5. https://doi.org/10.2337/dcS13-2030.
  • [37] Siegelaar SE, Holleman F, Hoekstra JB, DeVries JH. Glucose variability; does it matter? Endocr Rev 2010;31(2):171–82. https://doi.org/10.1210/er.2009-0021.
  • [38] Jaffe EA, Nachman RL, Becker CG, Minich CR. Culture of human endothelial cells derived from umbilical veins. J Clin Invest 1973;52:2745–52. https://doi.org/10.1172/JCI107470.
  • [39] Medina-Leyte DJ, Domínguez-Pérez M, Mercado I, Villarreal-Molina MT, Jacobo-Albavera L. Use of human umbilical vein endothelial cells (HUVEC) as a model to study cardiovascular disease: a review. Appl Sci 2020;10(3):938. https://doi.org/10.3390/app10030938.
  • [40] Onat D, Brillon D, Colombo PC, Schmidt AM. Human vascular endothelial cells: a model system for studying vascular inflammation in diabetes and atherosclerosis. Curr Diab Rep 2011;11(3):193–202. https://doi.org/10.1007/s11892- 011-0182-2.
  • [41] Di M, Wang L, Li M, Zhang Y, Liu X, Zeng R, et al., Dickkopf1 destabilizes atherosclerotic plaques and promotes plaque formation by inducing apoptosis of endothelial cells through activation of ER stress. Cell Death Dis 2017;8:e2917. https://doi.org/10.1038/cddis.2017.277.
  • [42] Fu C, Yin D, Nie H, Sun D. Notoginsenoside R1 Protects HUVEC against oxidized low density lipoprotein (Ox-LDL)- induced atherogenic response via down-regulating miR-132. Cell Physiol Biochem 2018;51(4):1739–50. https://doi.org/10.1159/000495677.
  • [43] Blechinger J, Bauer AT, Torrano AA, Gorzelanny C, Bräuchle C, Schneider SW. Uptake kinetics and nanotoxicity of silica nanoparticles are cell type dependent. Small 2013;9 (23):3970–80. https://doi.org/10.1002/smll.201301004.
  • [44] Wen T, Yang A, Piao L, Hao S, Du L, Meng J, et al. Comparative study of in vitro effects of different nanoparticles at non-cytotoxic concentration on the adherens junction of human vascular endothelial cells. Int J Nanomed 2019;14:4475–89. https://doi.org/10.2147/IJN. S208225.
  • [45] Reckelhoff JF, LaMarca B, Garovic VD, Alexander BT. Human umbilical venous endothelial cells: early predictors of cardiovascular risk in offspring? Hypertension 2019;74 (1):32–4. https://doi.org/10.1161/ HYPERTENSIONAHA.119.12652.
  • [46] Favot L, Keravis T, Holl V, Le Bec A, Lugnier C. VEGF-induced HUVEC migration and proliferation are decreased by PDE2 and PDE4 inhibitors. Thromb Haemost 2003;90(2):334–43. https://doi.org/10.1160/TH03-02-0084.
  • [47] Chen Z, Htay A, Dos Santos W, Gillies GT, Fillmore HL, Sholley MM, et al. In vitro angiogenesis by human umbilical vein endothelial cells (HUVEC) induced by threedimensional co-culture with glioblastoma cells. J Neurooncol 2009;92(2):121–8. https://doi.org/10.1007/s11060-008-9742-y.
  • [48] Shi B, Andrukhov O, Berner S, Schedle A, Rausch-Fan X. The angiogenic behaviors of human umbilical vein endothelial cells (HUVEC) in co-culture with osteoblast-like cells (MG63) on different titanium surfaces. Dent Mater 2014;30 (8):839–47. https://doi.org/10.1016/j.dental.2014.05.005.
  • [49] Yukawa H, Suzuki K, Aoki K, Arimoto T, Yasui T, Kaji N, et al. Imaging of angiogenesis of human umbilical vein endothelial cells by uptake of exosomes secreted from hepatocellular carcinoma cells. Sci Rep 2018;8(1). https://doi. org/10.1038/s41598-018-24563-0.
  • [50] McCormick SM, Eskin SG, McIntire LV, Teng CL, Lu CM, Russell CG, et al. DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc Natl Acad Sci USA 2001;98 (16):8955–60. https://doi.org/10.1073/pnas.171259298.
  • [51] Vallely MP, Bannon PG, Hughes CF, Kritharides L. Endothelial expression of intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 is suppressed by postbypass plasma containing increased soluble intercellular adhesion molecule 1 and vascular cell adhesion molecule 1. J Thorac Cardiovasc Surg 2002;124 (4):758–67. https://doi.org/10.1067/mtc.2002.123133.
  • [52] Altannavch TS, Roubalová K, Kucera P, Andel M. Effect of high glucose concentrations on expression of ELAM-1, VCAM-1 and ICAM-1 in HUVEC with and without cytokine activation. Physiol Res 2004;53(1):77–82.
  • [53] Di Camillo B, Sanavia T, Iori E, Bronte V, Roncaglia E, Maran A, et al. The transcriptional response in human umbilical vein endothelial cells exposed to insulin: a dynamic gene expression approach. PLoS ONE 2010;5(12):e14390. https://doi.org/10.1371/journal.pone.0014390.
  • [54] Breen LT, McHugh PE, Murphy BP. HUVEC ICAM-1 and VCAM-1 synthesis in response to potentially athero-prone and athero-protective mechanical and nicotine chemical stimuli. Ann Biomed Eng 2010;38(5):1880–92. https://doi.org/10.1007/s10439-010-9959-8.
  • [55] Campolo J, Vozzi F, Penco S, Cozzi L, Caruso R, Domenici C, et al. Vascular injury post stent implantation: different gene expression modulation in human umbilical vein endothelial cells (HUVECs) model. PLoS ONE 2014;9(2):e90213. https://doi.org/10.1371/journal.pone.0090213.
  • [56] Popova PV, Vasileva LB, Tkachuk AS, Puzanov MV, Bolotko YA, Pustozerov EA, et al. Association of tribbles homologue 1 gene expression in human umbilical vein endothelial cells with duration of intrauterine exposure to hyperglycaemia. Genet Res (Camb) 2018;100. https://doi.org/10.1017/ S0016672318000010.
  • [57] Ciechanowska A, Ladyzynski P, Hoser G, Sabalinska S, Kawiak J, Foltynski P, et al. Human endothelial cells hollow fiber membrane bioreactor as a model of the blood vessel for in vitro studies. J Artif Organs 2016;19(3):270–7. https://doi.org/10.1007/s10047-016-0902-0.
  • [58] dela Paz NG, Walshe TE, Leach LL, Saint-Geniez M, D’Amore PA. Role of shear-stress-induced VEGF expression in endothelial cell survival. J Cell Sci 2012;125(Pt 4):831–43. https://doi.org/10.1242/jcs.084301.
  • [59] Pang Z, Antonetti DA, Tarbell JM. Shear stress regulates HUVEC hydraulic conductivity by occludin phosphorylation. Ann Biomed Eng 2005;33(11):1536–45. https://doi.org/10.1007/s10439-005-7786-0.
  • [60] Fede C, Albertin G, Petrelli L, DeCaro R, Fortunati I, Weber V, et al. Influence of shear stress and size on viability of endothelial cells exposed to gold nanoparticles. J Nanopart Res 2017;19(9):316. https://doi.org/10.1007/s11051-017-3993-5.
  • [61] Janke D, Jankowski J, Rüth M, Buschmann I, Lemke H-D, Jacobi D, et al. The, ‘‘artificial artery” as in vitro perfusion model. PLoS ONE 2013;8(3):e57227. https://doi.org/10.1371/journal.pone.0057227.
  • [62] Lorenzi M, Cagliero E, Toledo S. Glucose toxicity for human endothelial cells in culture. Delayed replication, disturbed cell cycle, and accelerated death. Diabetes 1985;34(7):621–7. https://doi.org/10.2337/diab.34.7.621.
  • [63] Lorenzi M, Montisano DF, Toledo S, Barrieux A. High glucose induces DNA damage in cultured human endothelial cells. J Clin Invest 1986;77(1):322–5.
  • [64] Baumgartner-Parzer SM, Wagner L, Pettermann M, Grillari J, Gessl A, Waldhäusl W. High-glucose-triggered apoptosis in cultured endothelial cells. Diabetes 1995;44(11):1323–7. https://doi.org/10.2337/diab.44.11.1323.
  • [65] Podestá F, Roth T, Ferrara F, Cagliero E, Lorenzi M. Cytoskeletal changes induced by excess extracellular matrix impair endothelial cell replication. Diabetologia 1997;40 (8):879–86. https://doi.org/10.1007/s001250050763.
  • [66] Lorenzi M, Nordberg JA, Toledo S. High glucose prolongs cell-cycle traversal of cultured human endothelial cells. Diabetes 1987;36(11):1261–7. https://doi.org/10.2337/diab.36.11.1261.
  • [67] Altannavch TS, Roubalová K, Kucera P, Andel M. Effect of high glucose concentrations on expression of ELAM-1, VCAM-1 and ICAM-1 in HUVEC with and without cytokine activation. Physiol Res 2004;53(1):77–82.
  • [68] Peng HY, Li HP, Li MQ. High glucose induces dysfunction of human umbilical vein endothelial cells by upregulating miR-137 in gestational diabetes mellitus. Microvasc Res 2018;118:90–100. https://doi.org/10.1016/j.mvr.2018.03.002.
  • [69] Takami S, Yamashita S, Kihara S, Kameda-Takemura K, Matsuzawa Y. High concentration of glucose induces the expression of intercellular adhesion molecule-1 in human umbilical vein endothelial cells. Atherosclerosis 1998;138 (1):35–41. https://doi.org/10.1016/s0021-9150(97)00286-4.
  • [70] Yang Z, Mo X, Gong Q, Pan Q, Yang X, Cai W, et al. Critical effect of VEGF in the process of endothelial cell apoptosis induced by high glucose. Apoptosis 2008;13(11):1331–43. https://doi.org/10.1007/s10495-008-0257-y.
  • [71] Du XL, Sui GZ, Stockklauser-Färber K, Weiss J, Zink S, Schwippert B, et al. Introduction of apoptosis by high proinsulin and glucose in cultured human umbilical vein endothelial cells is mediated by reactive oxygen species. Diabetologia 1998;41(3):249–56. https://doi.org/10.1007/s001250050900.
  • [72] Ho FM, Liu SH, Liau CS, Huang PJ, Lin-Shiau SY. High glucose-induced apoptosis in human endothelial cells is mediated by sequential activations of c-Jun NH(2)-terminal kinase and caspase-3. Circulation 2000;101(22):2618–24. https://doi.org/10.1161/01.cir.101.22.2618.
  • [73] Ido Y, Carling D, Ruderman N. Hyperglycemia-induced apoptosis in human umbilical vein endothelial cells: inhibition by the AMP-activated protein kinase activation. Diabetes 2002;51(1):159–67. https://doi.org/10.2337/diabetes.51.1.159.
  • [74] Ho FM, Lin WW, Chen BC, Chao CM, Yang CR, Lin LY, et al. High glucose-induced apoptosis in human vascular endothelial cells is mediated through NF-kappaB and c-Jun NH2-terminal kinase pathway and prevented by PI3K/Akt/ eNOS pathway. Cell Signal 2006;18(3):391–9. https://doi.org/10.1016/j.cellsig.2005.05.009.
  • [75] Sheu ML, Ho FM, Yang RS, Chao KF, Lin WW, Lin-Shiau SY, et al. High glucose induces human endothelial cell apoptosis through a phosphoinositide 3-kinase-regulated cyclooxygenase-2 pathway. Arterioscler Thromb Vasc Biol 2005;25(3):539–45. https://doi.org/10.1161/01.ATV. 0000155462.24263.e4.
  • [76] Zhao XY, Wang XF, Li L, Zhang L, Shen DL, Li DH, et al. Effects of high glucose on human umbilical vein endothelial cell permeability and myosin light chain phosphorylation. Diabetol Metab Syndr 2015;7(1). https://doi.org/10.1186/s13098-015-0098-0.
  • [77] Zhang J, Guo Y, Ge W, Zhou X, Pan M. High glucose induces apoptosis of HUVECs in a mitochondria-dependent manner by suppressing hexokinase 2 expression. Exp Ther Med 2019;18(1):621–9. https://doi.org/10.3892/etm.2019.7609.
  • [78] Alvarado-Vásquez N, Páez A, Zapata E, Alcázar-Leyva S, Zenteno E, Massó F, et al. HUVECs from newborns with a strong family history of diabetes show diminished ROS synthesis in the presence of high glucose concentrations. Diabetes Metab Res Rev 2007;23(1):71–80. https://doi.org/10.1002/(ISSN)1520-7560.
  • [79] Zhu T, Wang H, Wang L, Zhong X, Huang W, Deng X, et al. Ginsenoside Rg1 attenuates high glucose-induced endothelial barrier dysfunction in human umbilical vein endothelial cells by protecting the endothelial glycocalyx. Exp Ther Med 2019;17(5):3727–33. https://doi.org/10.3892/etm10.3892/etm.2019.7378.
  • [80] Shen YH, Wang LY, Zhang BB, Hu QM, Wang P, He B-Q, et al. Ethyl rosmarinate protects high glucose-induced injury in human endothelial cells. Molecules 2018;23(12):3372. https://doi.org/10.3390/molecules23123372.
  • [81] Chao CL, Hou YC, Chao PD, Weng CS, Ho FM. The antioxidant effects of quercetin metabolites on the prevention of high glucose-induced apoptosis of human umbilical vein endothelial cells. Br J Nutr 2009;101 (8):1165–70. https://doi.org/10.1017/S0007114508073637.
  • [82] Tsuneki H, Sekizaki N, Suzuki T, Kobayashi S, Wada T, Okamoto T, et al. Coenzyme Q10 prevents high glucoseinduced oxidative stress in human umbilical vein endothelial cells. Eur J Pharmacol 2007;566(1-3):1–10. https://doi.org/10.1016/j.ejphar.2007.03.006.
  • [83] Shukla K, Sonowal H, Saxena A, Ramana KV. Didymin prevents hyperglycemia-induced human umbilical endothelial cells dysfunction and death. Biochem Pharmacol 2018;152:1–10. https://doi.org/10.1016/j. Bcp.2018.03.012.
  • [84] Wang J-S, Huang Y, Zhang S, Yin H-J, Zhang L, Zhang Y-H, et al. A protective role of paeoniflorin in fluctuant hyperglycemia-induced vascular endothelial injuries through antioxidative and anti-inflammatory effects and reduction of PKCb1. Oxid Med Cell Longev 2019;2019:1–11. https://doi.org/10.1155/2019/5647219.
  • [85] Wang J, Yin H, Huang Y, Guo C, Xia C, Liu Q, et al. Panax quinquefolius saponin of stem and leaf attenuates intermittent high glucose-induced oxidative stress injury in cultured human umbilical vein endothelial cells via PI3K/ Akt/GSK-3 b pathway. Evid Based Complement Alternat Med 2013;2013. https://doi.org/10.1155/2013/196283 196283.
  • [86] Piconi L, Corgnali M, Da Ros R, Assaloni R, Piliego T, Ceriello A. The protective effect of rosuvastatin in human umbilical endothelial cells exposed to constant or intermittent high glucose. J Diabetes Complications 2008;22(1):38–45. https://doi.org/10.1016/j.jdiacomp.2007.03.004.
  • [87] Hao Y, Liu HM, Wei X, Gong X, Lu ZY, Huang ZH. Diallyl trisulfide attenuates hyperglycemia-induced endothelial apoptosis by inhibition of Drp1-mediated mitochondrial fission. Acta Diabetol 2019;56(11):1177–89. https://doi.org/ 10.1007/s00592-019-01366-x.
  • [88] You L, Fang Z, Shen G, Wang Q, He Y, Ye S, et al. Astragaloside IV prevents high glucose-induced cell apoptosis and inflammatory reactions through inhibition of the JNK pathway in human umbilical vein endothelial cells. Mol Med Rep 2019. https://doi.org/10.3892/mmr10.3892/mmr.2019.9812.
  • [89] Han X, Wang B, Sun Y, Huang J, Wang X, Ma W, et al. Metformin modulates high glucose-incubated human umbilical vein endothelial cells proliferation and apoptosis through AMPK/CREB/BDNF pathway. Front Pharmacol 2018;9. https://doi.org/10.3389/fphar.2018.01266.
  • [90] Li Q, Lin Y, Wang S, Zhang L, Guo L. GLP-1 inhibits high-glucose-induced oxidative injury of vascular endothelial cells. Sci Rep 2017;7(1):8008. https://doi.org/10.1038/s41598-017-06712-z.
  • [91] Jayakumar T, Chang C-C, Lin S-L, Huang Y-K, Hu C-M, Elizebeth AR, et al. Brazilin ameliorates high glucose-induced vascular inflammation via inhibiting ROS and CAMs production in human umbilical vein endothelial cells. Biomed Res Int 2014;2014:1–10. https://doi.org/10.1155/2014/403703.
  • [92] Chen J, Zhang W, Xu Q, Zhang J, Chen W, Xu Z, et al. Ang-(1–7) protects HUVECs from high glucose-induced injury and inflammation via inhibition of the JAK2/STAT3 pathway. Int J Mol Med 2018. https://doi.org/10.3892/ijmm.2018.3507.
  • [93] Nie J. UNC0321 inhibits high glucose induced apoptosis in HUVEC by targeting Rab4. Biomed Pharmacother 2020;131:110662. https://doi.org/10.1016/j.biopha.2020.110662.
  • [94] Tousian H, Razavi BM, Hosseinzadeh H. Alpha-mangostin decreased cellular senescence in human umbilical vein endothelial cells. DARU J Pharm Sci 2020;28(1):45–55. https://doi.org/10.1007/s40199-019-00305-z.
  • [95] Guan Q, Zhang Y, Yu C, Liu Y, Gao L, Zhao J. Hydrogen sulfide protects against high-glucose-induced apoptosis in endothelial cells. J Cardiovasc Pharmacol 2012;59(2):188–93. https://doi.org/10.1097/FJC.0b013e31823b4915.
  • [96] Guan Q, Wang X, Gao L, Chen J, Liu Y, Yu C, et al. Hydrogen sulfide suppresses high glucose-induced expression of intercellular adhesion molecule-1 in endothelial cells. J Cardiovasc Pharmacol 2013;62(3):278–84. https://doi.org/10.1097/FJC.0b013e31829875ef.
  • [97] Grambow E, Klee G, Xie W, Schafmayer C, Vollmar B. Hydrogen sulfide reduces the activity of human endothelial cells. Clin Hemorheol Microcirc 2020;76(4):513–23. https://doi.org/10.3233/CH-200868.
  • [98] Lin J, Chen M, Liu D, Guo R, Lin K, Deng H, et al. Exogenous hydrogen sulfide protects human umbilical vein endothelial cells against high glucose-induced injury by inhibiting the necroptosis pathway. Int J Mol Med 2018. https://doi.org/10.3892/ijmm.2017.3330.
  • [99] Lin F, Yang Y, Wei S, Huang X, Peng Z, Ke X, et al. Hydrogen sulfide protects against high glucose-induced human umbilical vein endothelial cell injury through activating PI3K/Akt/eNOS pathway. Drug Des Devel Ther 2020;14:621–33. https://doi.org/10.2147/DDDT.S242521.
  • [100] La Sala L, Mrakic-Sposta S, Micheloni S, Prattichizzo F, Ceriello A. Glucose-sensing microRNA-21 disrupts ROS homeostasis and impairs antioxidant responses in cellular glucose variability. Cardiovasc Diabetol 2018;17(1):105. https://doi.org/10.1186/s12933-018-0748-2.
  • [101] Risso A, Mercuri F, Quagliaro L, Damante G, Ceriello A. Intermittent high glucose enhances apoptosis in human umbilical vein endothelial cells in culture. Am J Physiol Endocrinol Metab 2001;281(5):E924–30. https://doi.org/10.1152/ajpendo.2001.281.5.E924.
  • [102] Quagliaro L, Piconi L, Assaloni R, Martinelli L, Motz E, Ceriello A. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)Hoxidase activation. Diabetes 2003;52(11):2795–804. https://doi.org/10.2337/diabetes.52.11.2795.
  • [103] Piconi L, Quagliaro L, Assaloni R, Da Ros R, Maier A, Zuodar G, et al. Constant and intermittent high glucose enhances endothelial cell apoptosis through mitochondrial superoxide overproduction. Diabetes Metab Res Rev 2006;22 (3):198–203. https://doi.org/10.1002/dmrr.613.
  • [104] Piconi L, Quagliaro L, Da Ros R, Assaloni R, Giugliano D, Esposito K, et al. Intermittent high glucose enhances ICAM1, VCAM-1, E-selectin and interleukin-6 expression in human umbilical endothelial cells in culture: the role of poly(ADP-ribose) polymerase. J Thromb Haemost 2004;2 (8):1453–9. https://doi.org/10.1111/j.1538-7836.2004.00835.x.
  • [105] Quagliaro L, Piconi L, Assaloni R, Da Ros R, Maier A, Zuodar G, et al. Intermittent high glucose enhances ICAM-1, VCAM1 and E-selectin expression in human umbilical vein endothelial cells in culture: the distinct role of protein kinase C and mitochondrial superoxide production. Atherosclerosis 2005;183(2):259–67. https://doi.org/10.1016/j.atherosclerosis. 2005.03.015.
  • [106] Maeda M, Hayashi T, Mizuno N, Hattori Y, Kuzuya M, Saretzki G. Intermittent high glucose implements stress-induced senescence in human vascular endothelial cells: role of superoxide production by NADPH oxidase. PLoS ONE 2015;10(4):e0123169. https://doi.org/10.1371/journal.pone.0123169.
  • [107] Schisano B, Tripathi G, McGee K, McTernan PG, Ceriello A. Glucose oscillations, more than constant high glucose, induce p53 activation and a metabolic memory in human endothelial cells. Diabetologia 2011;54(5):1219–26. https://doi.org/10.1007/s00125-011-2049-0.
  • [108] Testa R, Bonfigli AR, Prattichizzo F, La Sala L, De Nigris V, Ceriello A. The, ‘‘Metabolic Memory” theory and the early treatment of hyperglycemia in prevention of diabetic complications. Nutrients 2017;9(5):437. https://doi.org/10.3390/nu9050437.
  • [109] Cencioni C, Spallotta F, Greco S, Martelli F, Zeiher AM, Gaetano C. Epigenetic mechanisms of hyperglycemic memory. Int J Biochem Cell Biol 2014;51:155–8. https://doi. org/10.1016/j.biocel.2014.04.014.
  • [110] Kuricová K, Pácal L, Šoupal J, Prázný M, Kańková K. Effect of glucose variability on pathways associated with glucotoxicity in diabetes: evaluation of a novel in vitro experimental approach. Diabetes Res Clin Pract 2016;114:1–8. https://doi.org/10.1016/j.diabres.2016.02.006.
  • [111] La Sala L, Pujadas G, De Nigris V, Canivell S, Novials A, Genovese S, et al. Oscillating glucose and constant high glucose induce endoglin expression in endothelial cells: the role of oxidative stress. Acta Diabetol 2015;52(3):505–12. https://doi.org/10.1007/s00592-014-0670-3.
  • [112] La Sala L, Cattaneo M, De Nigris V, Pujadas G, Testa R, Bonfigli AR, et al. Oscillating glucose induces microRNA-185 and impairs an efficient antioxidant response in human endothelial cells. Cardiovasc Diabetol 2016;15(1). https://doi.org/10.1186/s12933-016-0390-9.
  • [113] Bala K, Ambwani K, Gohil NK. Effect of different mitogens and serum concentration on HUVEC morphology and characteristics: implication on use of higher passage cells. Tissue Cell 2011;43(4):216–22. https://doi.org/10.1016/j.tice.2011.03.004.
  • [114] Prasad Chennazhy K, Krishnan LK. Effect of passage number and matrix characteristics on differentiation of endothelial cells cultured for tissue engineering. Biomaterials 2005;26(28):5658–67. https://doi.org/10.1016/j.biomaterials.2005.02.024.
  • [115] Liao H, He H, Chen Y, Zeng F, Huang J, Wu L, et al. Effects of long-term serial cell passaging on cell spreading, migration, and cell-surface ultrastructures of cultured vascular endothelial cells. Cytotechnology 2014;66(2):229–38. https://doi.org/10.1007/s10616-013-9560-8.
  • [116] Lidington EA, Moyes DL, McCormack AM, Rose ML. A comparison of primary endothelial cells and endothelial cell lines for studies of immune interactions. Transpl Immunol 1999;7(4):239–46. https://doi.org/10.1016/s0966-3274(99) 80008-2.
  • [117] Ciechanowska A, Gora I, Sabalinska S, Kawiak J, Ladyzynski P. Effect of the passage number and glucose concentration on viability of endothelial cells cultured in vitro. Int J Artif Organs 2019;42(8):424. https://doi.org/10.1177/0391398819860985.
  • [118] Ciechanowska A, Ladyzynski P, Hoser G, Sabalinska S, Kawiak J, Foltynski P, Wojciechowski C, Chwojnowski A, Wojcicki JM. Transmembrane pressure as an indicator of a density of endothelial cells cultured inside capillaries of a membrane bioreactor under dynamic conditions. In: Lacković I., Vasic D. (eds) Proc. 6th European Conference of the International Federation for Medical and Biological Engineering. IFMBE Proc 2015;45:545–8. https://doi.org/ 10.1007/978-3-319-11128-5_136.
  • [119] Ciechanowska A, Gora I, Sabalinska S, Foltynski P, Ladyzynski P. An effect of a culturing substrate and glucose concentration on HUVEC viability in in vitro cultures. Int J Artif Organs 2020;43(8):514. https://doi.org/10.1177/0391398820937567.
  • [120] Suh S, Kim JH. Glycemic variability: how do we measure it and why is it important? Diabetes Metab J 2015;39(4):273. https://doi.org/10.4093/dmj.2015.39.4.273.
  • [121] Zhou Z, Sun B, Huang S, Zhu C, Bian M. Glycemic variability: adverse clinical outcomes and how to improve it? Cardiovasc Diabetol 2020;19:102. https://doi.org/10.1186/s12933-020-01085-6.
  • [122] Kanamori T, Takeshita Y, Isobe Y, Kato K-ichiro, Misu H, Kaneko S, et al. Mealtime dosing of a rapid-acting insulin analog reduces glucose variability and suppresses daytime cardiac sympathetic activity: a randomized controlled study in hospitalized patients with type 2 diabetes. BMJ Open Diab Res Care 2018;6(1):e000588. https://doi.org/10.1136/bmjdrc2018-000588.
  • [123] White NH, Chase HP, Arslanian S, Tamborlane WV. the 4030 Study Group. Comparison of glycemic variability associated with insulin glargine and intermediate-acting insulin when used as the basal component of multiple daily injections for adolescents with type 1 diabetes. Diabetes Care 2009;32 (3):387–93. https://doi.org/10.2337/dc08-0800.
  • [124] Ilkowitz JT, Katikaneni R, Cantwell M, Ramchandani N, Heptulla RA. Adjuvant liraglutide and insulin versus insulin monotherapy in the closed-loop system in type 1 diabetes: a randomized open-labeled crossover design trial. J Diabetes Sci Technol 2016;10(5):1108–14. https://doi.org/10.1177/1932296816647976.
  • [125] Weinzimer SA, Sherr JL, Cengiz E, Kim G, Ruiz JL, Carria L, et al. Efect of pramlintide on prandial glycemic excursions during closed-loop control in adolescents and young adults with type 1 diabetes. Diabetes Care 2012;35(10):1994–9. https://doi.org/10.2337/dc12-0330.
  • [126] Buse JB, Kudva YC, Battelino T, Davis SN, Shin J, Welsh JB. Effects of sensor-augmented pump therapy on glycemic variability in well-controlled type 1 diabetes in the STAR 3 Study. Diabetes Technol Ther 2012;14(7):644–7. https://doi.org/10.1089/dia.2011.0294.
  • [127] Wojcicki JM, Ladyzynski P, Foltynski P. What we can really expect from telemedicine in intensive diabetes treatment: 10 years later. Diabetes Technol Ther 2013;15(3):260–8. https://doi.org/10.1089/dia.2012.0242.
  • [128] Ladyzynski P, Wojcicki JM, Krzymien J, Foltynski P, Migalska-Musial K, Tracz M, Karnafel W. Mobile telecare system for intensive insulin treatment and patient education. First applications for newly diagnosed type 1 diabetic patients. Int J Artif Organs 29(11):1074–81. https://doi.org/10.1177/039139880602901108.
  • [129] Foltynski P, Ladyzynski P, Pankowska E, Mazurczak K. Efficacy of automatic bolus calculator with automatic speech recognition in patients with type 1 diabetes: a randomized cross-over trial. J Diabetes 2018;10(7):60–8. https://doi.org/10.1111/1753-0407.12641.
  • [130] Dovc K, Cargnelutti K, Sturm A, Selb J, Bratina N, Battelino T. Continuous glucose monitoring use and glucose variability in pre-school children with type 1 diabetes. Diabetes Res Clin Pract 2019;147:76–80. https://doi.org/10.1016/j.diabres.2018.10.005.
  • [131] Gomez-Peralta F, Dunn T, Landuyt K, Xu Y, Merino-Torres JF. Flash glucose monitoring reduces glycemic variability and hypoglycemia: real-world data from Spain. BMJ Open Diab Res Care 2020;8(1):e001052. https://doi.org/10.1136/bmjdrc2019-001052.
  • [132] Tauschmann M, Thabit H, Bally L, Allen JM, Hartnell S, Wilinska ME, et al. Closed-loop insulin delivery in suboptimally controlled type 1 diabetes: a multicentre, 12- week randomised trial. Lancet 2018;392:1321–9. https://doi. org/10.1016/S0140-6736(18)31947-0.
  • [133] Dassau E, Renard E, Place J, Farret A, Pelletier M-J, Lee J, et al. Intraperitoneal insulin delivery provides superior glycaemic regulation to subcutaneous insulin delivery in model predictive control-based fully-automated artificial pancreas in patients with type 1 diabetes: a pilot study. Diabetes Obes Metab 2017;19(12):1698–705. https://doi.org/10.1111/dom.12999.
  • [134] Krzymien J, Ladyzynski P. Insulin in type 1 and type 2 diabetes-should the dose of insulin before a meal be based on glycemia or meal content? Nutrients 2019;11(3):607. https://doi.org/10.3390/nu11030607.
  • [135] Photiadis SJ, Gologorsky RC, Sarode D. The current status of bioartificial pancreas devices. ASAIO J 2020 Online first. https://doi.org/10.1097/MAT.0000000000001252.
  • [136] Gheibi S, Singh T, da Cunha JPMCM, Fex M, Mulder H. Insulin/glucose-responsive cells derived from induced pluripotent stem cells: disease modeling and treatment of diabetes. Cells 2020;9(11):2465. https://doi.org/10.3390/cells9112465.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10200843-afae-4231-a52c-6d5898686382
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.