PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Relative Change in SI Engine Performance Using Hydrogen and Alcohol as Fuel Supplements to Gasoline

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A simulation study on the effect of hydrogen and ethanol addition as supplementary fuel for gasoline engine at lean mixture (equivalence ratio ϕ = 0.8) was carried out to reduce the gasoline share in the mixture, thus reducing the fuel consumption and harmful emissions. The effect of supplementary fuels on engine performance, emissions, and availability was investigated. This was done by changing the ratio between gasoline and the supplementary fuels in the fuel mixture to achieve the required equivalence ratio. The first part of the simulation consisting of the performance and emissions calculated using the first law, was conducted for all engine speeds. The second part consisting of an availability analysis was conducted at the rated speed of 2750 rpm. The simulation study was conducted using the data obtained from measurements of Ricardo E6/T engine parameters (variable compression ratio engine). The data was also used to verify the models. The study shows that the hydrogen addition reduced the carbon monoxide (CO) and nitrogen oxides (NO2) share at the lean mixture. The hydrogen addition significantly improved the heat release rate compared with pure gasoline; however, the heat released was close to the top dead center due to its fast burning speed. The ethanol addition improved the first law performance of the engine, e.g., power and efficiency; however, at the cost of increased heat loss. It also improved the indicated work availability in comparison with the addition of hydrogen.
Twórcy
  • Department of Mechanical Engineering, School of Engineering, The University of Jordan, Amman 11942, Jordan
  • Energy and Renewable Energies Technology Center, University of Technology-Iraq, Baghdad 10066, Al Senaa Street, Iraq
  • Energy and Renewable Energies Technology Center, University of Technology-Iraq, Baghdad 10066, Al Senaa Street, Iraq
Bibliografia
  • 1. Ji C., Wang S. Effect of Hydrogen Addition On Combustion and Emissions Performance of A Spark Ignition Gasoline Engine At Lean Conditions. International journal of hydrogen energy. 2009; 34(18): 7823-7834. https://doi.org/10.1016/j. ijhydene.2009.06.082
  • 2. Ji C., Wang S. Effect of Hydrogen Addition On the Idle Performance of A Spark Ignited Gasoline Engine At Stoichiometric Condition. International journalofhydrogen Energy. 2009; 34(8): 3546-3556. https://doi.org/10.1016/j.ijhydene.2009.02.052
  • 3. Karim G.A. Hydrogen as A Spark Ignition Engine Fuel. International Journal of Hydrogen Energy. 2003; 28(5): 569-577. https://doi.org/10.1016/ S0360-3199(02)00150-7
  • 4. Sheet E.A.E. Performance and Sensitivity analysis of Factors Affecting NO_x Emissions from Hydrogen Fueled SI Engines. Journal of Petroleum Research & Studies. 2016; 120(12): 47-74.
  • 5. Verma G., Prasad R.K., Agarwal R.A., Jain S., Agarwal A.K. Experimental Investigations of Combustion, Performance and Emission Characteristics of A Hydrogen Enriched Natural Gas Fuelled Prototype Spark Ignition Engine. Fuel. 2016; 178: 209- 217. https://doi.org/10.1016/j.fuel.2016.03.022
  • 6. Yamin J.A. Comparative Study Using Hydro- gen and Gasoline as Fuels: Combustion Duration Effect. International Journal of Energy Research. 2006; 30(14): 1175-1187. https://doi. org/10.1002/er.1213
  • 7. Song Y., Zheng Z., Peng T., Yang Z., Xiong W., Pei Y. Numerical Investigation of The Combustion Characteristics Of An Internal Combustion Engine With Subcritical And Supercritical Fuel. Applied Sciences. 2020; 10(3): 862. https://doi. org/10.3390/app10030862
  • 8. Yip H.L., Srna A., Yuen A.C.Y., Kook S., Tay- lor R.A., Yeoh G.H., Medwell P.R., Chan Q.N. A Review of Hydrogen Direct Injection for Internal Combustion Engines: Towards Carbon-Free Combustion. Applied Sciences. 2019: 9(22): p.4842. https://doi:10.3390/app9224842
  • 9. Shrestha S.B., Karim G.A. Hydrogen as an Additive to Methane For Spark Ignition Engine Applications. In IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No. 97CH6203) 1997, Vol. 2, 910-915. https://doi: 10.1109/IECEC.1997.661890
  • 10. Bauer C.G., Forest T.W. Effect of Hydrogen Addition on the Performance of Methane-Fueled Vehicles. Part I: Effect on SI Engine Performance. International Journal of Hydrogen Energy. 2001; 26(1): 55-70. https://doi.org/10.1016/S0360- 3199(00)00067-7
  • 11. Ma F., Ding S., Wang Y., Wang Y., Wang J., Zhao S. Study On Combustion Behaviors and Cycle-By-Cycle Variations In A Turbocharged Lean Burn Natural Gas SI Engine With Hydrogen Enrichment. International Journal of Hydrogen Energy. 2008; 33(23): 7245-7255. https://doi.org/10.1016/j. ijhydene.2008.09.016
  • 12. Ma F., Wang Y., Wang M., Liu H., Wang J., Ding S., Zhao S. Development and Validation of A Quasi- Dimensional Combustion Model For SI Engines Fuelled By HCNG With Variable Hydrogen Fractions. International journal of hydrogen energy. 2008; 33(18): 4863-4875. https://doi.org/10.1016/j. ijhydene.2008.06.068
  • 13. Dunn-Rankin D. Lean Combustion: Technology and Control. Academic Press; 2011.
  • 14. Veziroglu T.N. 21st Century’s energy: hydrogen energy system. In Assessment of hydrogen energy for sustainable development (pp. 9-31). Springer, Dordrecht; 2007. https://doi.org/10.1007/978-1- 4020-6442-5_2
  • 15. Ball M., Wietschel M. The Future of Hydrogen–Opportunities and Challenges. International Journal of Hydrogen Energy. 2009; 34(2): 615-627. https://doi.org/10.1016/j.ijhydene.2008.11.014
  • 16. White C.M., Steeper R.R., Lutz A.E. The Hydrogen-Fueled Internal Combustion Engine: A Technical Review. International Journal of Hydrogen Energy. 2006; 31(10): 1292-1305. https://doi. org/10.1016/j.ijhydene.2005.12.001
  • 17. Steeper R.R., White C.M., Lutz A.E. The Hydrogen-Fueled Internal Combustion Engine: A Technical Review (No. SAND2005-3057J). Sandia Na- tional Laboratories; 2005.
  • 18. Nakajima Y., Yamane K., Shudo T., Hiruma M., Takagi Y. Research and Development Of A Hydrogen-Fueled Engine For Hybrid Electric Vehicles. SAE transactions 2000, 1175-1179.
  • 19. Martínez-Boggio S.D., Curto-Risso P.L., Medina A., Hernández A.C. Simulation of cycle-to-cycle variations on spark ignition engines fueled with gasoline-hydrogen blends. International Journal of Hydrogen Energy. 2016; 41(21): 9087-9099. https://doi.org/10.1016/j.ijhydene.2016.03.120
  • 20. Kamil M., Rahman M.M. Performance prediction of spark-ignition engine running on gasoline-hydrogen and methane-hydrogen blends. Applied En- ergy. 2015; 158: 556-567. https://doi.org/10.1016/j. apenergy.2015.08.041
  • 21. Akansu S.O., Tangöz S., Kahraman N., İlhak M.İ., Açıkgöz S. Experimental study of gasoline-ethanol-hydrogen blends combustion in an SI engine. International Journal of Hydrogen Energy. 2017; 42(40): 25781-25790. https://doi.org/10.1016/j. ijhydene.2017.07.014
  • 22. D’andrea T., Henshaw P.F., Ting D.K. The Addi- tion of Hydrogen To A Gasoline-Fuelled SI Engine. International Journal of Hydrogen Energy. 2004; 29(14): 1541-1552. https://doi.org/10.1016/j. ijhydene.2004.02.002
  • 23. Iodice P., Langella G., Amoresano A. Ethanol In Gasoline Fuel Blends: Effect on Fuel Consumption And Engine Out Emissions Of Si Engines In Cold Operating Conditions. Applied Thermal Engineering. 2018; 130: 1081-1089. https://doi. org/10.1016/j.applthermaleng.2017.11.090
  • 24. Phuangwongtrakul S., Wechsatol W., Sethaput T., Suktang K., Wongwises S. Experimental study on sparking ignition engine performance for op- timal mixing ratio of ethanol–gasoline blended fuels. Applied Thermal Engineering. 2016; 100: 869-879. https://doi.org/10.1016/j.appltherma- leng.2016.02.084
  • 25. Varde K.S. Combustion Characteristics of Small Spark Ignition Engines Using Hydrogen Supplemented Fuel Mixtures (No. 810921). SAE Techni- cal Paper 1981. https://doi.org/10.4271/810921
  • 26. Dimopoulos P., Bach C., Soltic P., Boulouchos K. Hydrogen–Natural Gas Blends Fuelling Passenger Car Engines: Combustion, Emissions and Well-To- Wheels Assessment. International Journal of Hydrogen Energy. 2008; 33(23): 7224-7236. https:// doi.org/10.1016/j.ijhydene.2008.07.012
  • 27. Ji C., Wang S., Zhang B. Combustion and Emis- sions Characteristics of A Hybrid Hydrogen–Gasoline Engine Under Various Loads And Lean Conditions. International Journal of Hydrogen Energy. 2010; 35(11): 5714-5722. https://doi.org/10.1016/j. ijhydene.2010.03.033
  • 28. Wang M. The greenhouse gases, regulated emis- sions, and energy use in transportation (GREET) model: Version 1.5. Center for Transportation Research, Argonne National Laboratory 2008.
  • 29. Dabas N., Dubey V., Chhabra M., Dwivedi G. Performance Analysis of an IC Engine Using Methanol, Ethanol, and Its Blend with Gasoline and Diesel as a Fuel. In Advances in Fluid and Thermal Engineering. Springer; 2019. https://doi. org/10.1007/978-981-13-6416-7_21
  • 30. Graham L.A., Belisle S.L., Baas C.L. Emissions From Light Duty Gasoline Vehicles Operating On Low Blend Ethanol Gasoline And E85. Atmospheric Environment. 2008; 42(19): 4498-4516. https:// doi.org/10.1016/j.atmosenv.2008.01.061
  • 31. Chao H.R., Lin T.C., Chao M.R., Chang F.H., Huang C.I., Chen C.B. Effect of Methanol- Containing Additive On The Emission Of Carbonyl Compounds From A Heavy-Duty Diesel Engine. Journal of Hazardous Materials. 2000; 73(1): 39-54. https://doi.org/10.1016/S0304- 3894(99)00162-4
  • 32. Suarez-Bertoa R., Zardini A.A., Keuken H., Astorga C. Impact of Ethanol Containing Gasoline Blends On Emissions From A Flex-Fuel Vehicle Tested Over The Worldwide Harmonized Light Duty Test Cycle (WLTC). Fuel. 2015; 143: 173- 182. https://doi.org/10.1016/j.fuel.2014.10.076
  • 33. Liu H., Wang X., Zhang D., Dong F., Liu X., Yang Y., Huang H., Wang Y., Wang Q., Zheng Z. Investigation on Blending Effects of Gasoline Fuel with N-Butanol, DMF, and Ethanol on the Fuel Consumption and Harmful Emissions in a GDI Vehicle. Energies 2019; 12(10): 1845. https://doi. org/10.3390/en12101845
  • 34. Su T., Ji C., Wang S., Cong X., Shi L. Improving The Combustion Performance Of A Gasoline Rotary Engine By Hydrogen Enrichment At Various Conditions. International Journal of Hydrogen Energy. 2018; 43(3): 1902-1908. https://doi. org/10.1016/j.ijhydene.2017.11.175
  • 35. Yu X., Guo Z., He L., Dong W., Sun P., Du Y., Li Z., Yang H., Wang S., Wu H. Experimental Study On Lean-Burn Characteristics of An SI Engine With Hydrogen/Gasoline Combined Injection And EGR. International Journal of Hydrogen Energy. 2019; 44(26): 13988-13998. https://doi.org/10.1016/j. ijhydene.2019.03.236
  • 36. Ratcliff M.A., Windom B., Fioroni G.M., John P.S., Burke S., Burton J., Christensen E.D., Sindler P., McCormick R.L. Impact of Ethanol Blending Into Gasoline On Aromatic Compound Evapo- ration And Particle Emissions From A Gasoline Direct Injection Engine. Applied Energy. 2019; 250: 1618-1631. https://doi.org/10.1016/j.apenergy.2019.05.030
  • 37. Elfasakhany A. Exhaust Emissions and Perfor- mance Of Ternary Iso-Butanol–Bio-Methanol– Gasoline And N-Butanol–Bio-Ethanol–Gasoline Fuel Blends In Spark-Ignition Engines: Assessment And Comparison. Energy. 2018; 158: 830- 844. https://doi.org/10.1016/j.energy.2018.05.120
  • 38. Bailey B.K. Performance of ethanol as a transportation fuel. In Handbook on Bioethanol. Routledge; 2018.
  • 39. Ozcan H. Hydrogen Enrichment Effects On the Second Law Analysis of A Lean Burn Natural Gas Engine. International Journal of Hydrogen Energy. 2010; 35(3): 1443-1452. https://doi.org/10.1016/j. ijhydene.2009.11.039
  • 40. Rakopoulos C.D., Kyritsis D.C. Hydrogen Enrichment Effects on the Second Law Analysis of Natural and Landfill Gas Combustion In Engine Cyl- inders. International Journal of Hydrogen Energy. 2006; 31(10): 1384-1393. https://doi.org/10.1016/j. ijhydene.2005.11.002
  • 41. Rakopoulos C.D., Scott M.A., Kyritsis D.C., Giakoumis E.G. Availability Analysis of Hydrogen/Natural Gas Blends Combustion In Internal Combustion Engines. Energy. 2008; 33(2): 248-255. https:// doi.org/10.1016/j.energy.2007.05.009
  • 42. Ghojel J.I. Review of The Development and Applications of The Wiebe Function: A Tribute to The Contribution of Ivan Wiebe To Engine Research. International Journal of Engine Research. 2010; 11(4): 297-312. https://doi. org/10.1243/14680874JER06510
  • 43. Ferguson C.R., Kirkpatrick A.T. Internal Combustion Engines: Applied Thermosciences. John Wiley & Sons; 2015.
  • 44. Benson R.S. A comprehensive digital computer program to simulate a compression ignition engine including intake and exhaust systems (No. 710173). SAE Technical Paper 1971. https://doi. org/10.4271/710173
  • 45. Caton J.A. A cycle simulation including the second law of thermodynamics for a spark-ignition engine: implications of the use of multiple-zones for combustion. SAE Transactions 2002.
  • 46. Karagöz Y. Effect of Hydrogen Addition At Dif- ferent Levels On Emissions and Performance of A Diesel Engine. Journal of Thermal Engineering. 2018; 4(2): 1780-1790.
  • 47. Sharma P., Dhar A. Effect of hydrogen supplementa- tion on engine performance and emissions. Internation- al Journal of Hydrogen Energy. 2018; 43(15): 7570- 7580. https://doi.org/10.1016/j.ijhydene.2018.02.181
  • 48. Al-Hasan M. Effect of Ethanol–Unleaded Gasoline Blends On Engine Performance and Exhaust Emis- sion. Energy Conversion and Management. 2003; 44(9): 1547-1561.
  • 49. Yücesu H.S., Topgül T., Cinar C., Okur M. Effect of Ethanol–Gasoline Blends On Engine Performance and Exhaust Emissions In Different Compression Ratios. Applied Thermal Engineering. 2006; 26(17-18): 2272-2278.
  • 50. Wu C.W., Chen R.H., Pu J.Y., and Lin T.H. The Influence of Air–Fuel Ratio On Engine Perfor- mance and Pollutant Emission of An SI Engine Us- ing Ethanol–Gasoline-Blended Fuels. Atmospheric Environment. 2004; 38(40): 7093-7100.
  • 51. Deng X., Chen Z., Wang X., Zhen H., Xie R. Exhaust Noise, Performance and Emission Characteristics of Spark Ignition Engine Fuelled With Pure Gasoline And Hydrous Ethanol Gasoline Blends. Case Stud- ies In Thermal Engineering. 2008; 12: 55-63.
  • 52. Mohamad B., Szepesi G.L., Bollo B. Effect of Ethanol-Gasoline Fuel Blends on the Exhaust Emissions and Characteristics of SI Engines. In Vehicle and Automotive Engineering. Springer 2008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e3fba3a-6860-46b9-aee1-8da91b4c02b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.