PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental studies of static and dynamic steel arch support load capacity and sliding joint temperature parameters during yielding

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Difficult geological and mining conditions as well as great stresses in the rock mass result in significant deformations of the rocks that surround the workings and also lead to the occurrence of tremors and rock bursts. Yielding steel arch support has been utilised in the face of hard coal extraction under difficult conditions for many years, both in Poland and abroad. A significant improvement in maintaining gallery working stability is achieved by increasing the yielding support load capacity and work through bolting; however, the use of rock bolts is often limited due to factors such as weak roof rock, significant rock mass fracturing, water accumulation, etc. This is why research and design efforts continue in order to increase yielding steel arch support resistance to both static and dynamic loads. Currently, the most commonly employed type of yielding steel arch support is a support system with frames constructed from overlapping steel arches coupled by shackles. The yield of the steel frame is accomplished by means of sliding joints constructed from sections of various profiles (e.g. V, TH or U-type), which slip after the friction force is exceeded; this force is primarily dependent on the type of shackles and the torque of the shackle screw nuts. This article presents the static bench testing results of ŁP10/V36/4/A, ŁP10/V32/4/A and ŁP10/V29/4/A yielding steel arch support systems formed from S480W and S560W steel with increased mechanical properties. The tests were conducted using 2 and 3 shackles in the joint, which made it possible to compare the load capacities, work values and characteristics of various types of support. The following shackle screw torques were used for the tests: Md = 500 Nm – for shackles utilised in the support constructed from V32 and V36 sections. Md = 400 Nm – for shackles utilised in the support constructed from V29 sections. The shackle screw torques used during the tests were greater compared to the currently utilised standard shackle screw torques within the range of Md = 350-450 Nm. Dynamic testing of the sliding joints constructed from V32 section with 2 and 3 shackles was also performed. The SD32/36W shackles utilised during the tests were produced in the reinforced versions and manufactured using S480W steel. Since comparative testing of a rock bolt-reinforced steel arch support system revealed that the bolts would undergo failure at the point of the support yield, a decision was made to investigate the character of the dynamics of this phenomenon. Consequently, this article also presents unique measurement results for top section acceleration values registered in the joints during the conduction of support tests at fullscale.Filming the yield in the joint using high-speed video and thermal cameras made it possible to register the dynamic characteristics of the joint heating process at the arch contact point as well as the mechanical sparks that accompanied it. Considering that these phenomena have thus far been poorly understood, recognising their significance is of great importance from the perspective of occupational safety under the conditions of an explosive atmosphere, especially in the light of the requirements of the new standard EN ISO 80079-36:2016, harmonised with the ATEX directive.
Rocznik
Strony
469--491
Opis fizyczny
Bibliogr. 53 poz., fot., rys., wykr.
Twórcy
  • Central Mining Institute, 1 Gwarków Sq., 40-166 Katowice, Poland
Bibliografia
  • [1] T. Majcherczyk, Z. Niedbalski, P. Małkowski, Ł. Bednarek, Analysis of yielding steel arch support with rock bolts in mine roadways stability aspect. Archives of Mining Sciences 59 (3), 641-654, (2014), DOI: 10.2478/amsc-2014-0045.
  • [2] T. Majcherczyk, S. Prusek, P. Małkowski, Z. Niedbalsk, M. Rotkegel, Ł. Szot, Stalowa obudowa podporowa podatna wyrobisk korytarzowych w kopalniach Jastrzębskiej Spółki Węglowej SA: stan obecny i kierunki rozwoju. [Yielding steel arch support in the gallery workings of Jastrzębska Spółka Węglowa SA mines: present state and directions for development]. Główny Instytut Górnictwa, Katowice, Poland, (2016).
  • [3] A.K. Verma, T.N. S ingh, Influence of Young’s Modulus and Poisson’s Ratio on the Displacement Around a Circular Tunnel. In Earth System Processes and Disaster Management , 181-201, Springer, Berlin, Heidelberg, (2013), https://doi.org/10.1007/978-3-642-28845-6_13.
  • [4] G. Bräuner, Gebirgsdruck und Gebirgsschläge: Fragen der Standsicherheit von Grubenbauen. [Rock pressure and rock burst: questions of the stability of mine support] 2. Auflage, Essen: Verlag Glückauf, (1991).
  • [5] J. Dubiński, W. Konopko, Tąpania: ocena, prognoza, zwalczanie [Tremors: evaluation, forecast, elimination]. Główny Instytut Górnictwa, Katowice (in Polish), (2000).
  • [6] J. Dubiński, G. Mutke, (Characteristics of mining tremors within the near-wave field zone. In Induced Seismic Events, 249-261, Birkhäuser Basel, 1996), DOI: 10.1007/978-3-0348-9204-9_4.
  • [7] W. Müller, Numerical simulation of rock bursts. Mining science and technology 12 (1), 27-42 (1991).
  • [8] J. Ptáček, P. Koníček, J. Holečko, A. Przeczek, P. Waclawik, Z. Pavelek, M. Macura, V. Kajzar, R. Kukutsch, Rockbursts in Ostrava Karviná Coalfield. Ústav geoniky AV ČR, v.v.i., Ostrava, (2017).
  • [9] M. Chudek, Obudowa wyrobisk górniczych. Część 1. Obudowa wyrobisk korytarzowych i komorowych. [Mine working support. Part 1. Gallery and chamber working support]. Wydawnictwo „Śląsk”. Poland (1986).
  • [10] M. Grodzicki, M. Rotkegel, The concept of modification and analysis of the strength of steel roadway supports for coal mines in the Soma Basin in Turkey. Studia Geotechnica et Mechanica 40 (1), 38-45 (2018).
  • [11] P. Horyl, R. Šňupárek, Behaviour of steel arch supports under dynamic effects of rockbursts. Mining Technology 116 (3), 119-128 (2007).
  • [12] P. Horyl, R. Šňupárek R., P. Marsalek, Behaviour of frictional joints in steel arch yielding supports. Archives of Mining Sciences 59 (3), 723-734 (2014).
  • [13] P. Horyl, R. Šňupárek R., P. Marsalek, K. Pacześniowski, Simulation of laboratory test of steel arch support. Archives of Mining Sciences 62 (1), 163-176 (2017).
  • [14] O. Jacobi, Praxis der Gebirgsbeherrschung. [Roof control practice]. 2. Auflage, Essen, Verlag Glückauf GmbH, Germany, (1981).
  • [15] S.G. Jukes, F.P. Hassani, B.N. Whittaker, Characteristics of steel arch support systems for mine roadways. Part. 1. Modelling theory, instrumentation and preliminary results. Mining Science and Technology 1 (1), 43-58 (1983).
  • [16] H. Kang, Support technologies for deep and complex roadways in underground coal mines: a review. International Journal of Coal Science & Technology 1 (3), 261-277. DOI: 10.1007/s40789-014-0043-0, (2014).
  • [17] R. Podjadtke, H. Witthaus, J. Breedlove, Development in steel roadway support-a track record. In The 27th International Conference on Ground Control in Mining, Morgantown, West Virginia, 358-365, (2009, July).
  • [18] A. Pytlik, Tests of steel arch and rock bolt support resistance to static and dynamic loading induced by suspended monorail transportation. Studia Geotechnica et Mechanica 41 (2), 81-92 (2019).
  • [19] X. Sun, L. Wang, Y. Lu, B. Jiang, Z. Li, J. Zhang, A yielding bolt - grouting support design for a soft-rock roadway under high stress: a case study of the Yuandian No. 2 coal mine in China. Journal of the Southern African Institute of Mining and Metallurgy 118 (1), 71-82 (2018).
  • [20] M. Turek, Podstawy podziemnej eksploatacji pokładów węgla kamiennego. [The basics of underground hard coal deposit extraction]. Główny Instytut Górnictwa, Katowice, (2010).
  • [21] Y. Zhao, N. Liu, X. Zheng, N. Zhang, Mechanical model for controlling floor heave in deep roadways with U-shaped steel closed support. International Journal of Mining Science and Technology 25 (5), 713-720 (2015).
  • [22] A. Nierobisz, Obudowa podporowo-kotwiowa dla rozcinek rozruchowych ścian - przykłady zastosowań. [Mixed support system for longwall cross-cuts – examples of application]. Nowoczesne technologie górnicze. Problemy utrzymania wyrobisk korytarzowych. Politechnika Śląska w Gliwicach. Stowarzyszenie Inżynierów i Techników Górnictwa, Gliwice, Ustroń 20-21 April, 131-155 (2006).
  • [23] A. Pytlik, Stanowisko i metodyka badań obudowy podporowo-kotwiowej w skali naturalnej. [Full-scale mixed support test stand and methodology]. Przegląd Górniczy 8, 18-23 (2017).
  • [24] A. Pytlik, Comparative Bench Testing of Steel Arch Support Systems with and Without Rock Bolt Reinforcements. Archives of Mining Sciences 64 (4), 747-764 (2019).
  • [25] M. Turek (Ed.), Bezpieczeństwo obudowy podporowo-kotwiowej w warunkach występowania wstrząsów górotworu. [Mixed support safety under the conditions of rock mass tremor occurrence]. Główny Instytut Górnictwa, Katowice, (2012).
  • [26] M. Turek, S. Prusek, W. Masny, Obudowa podporowo-kotwiowa w kopalniach węgla kamiennego. [Mixed support in hard coal mines]. Główny Instytut Górnictwa, Katowice, (2015).
  • [27] M. Cała, J. Flisiak, A. Tajduś, Mechanizm współpracy kotwi z górotworem o zróżnicowanej budowie. [The in-teraction between a rock bolt and a rock mass with varied structure]. Biblioteka Szkoły Eksploatacji Podziemnej. Seria z Lampką Górniczą 8. Kraków (in Polish), (2001).
  • [28] PN-G-15022:2018-11. Obudowa wyrobisk górniczych. Odrzwia podatne z kształtowników korytkowych. Wymaga-nia wytrzymałościowe i badania. [Mine working support. Yielding frames constructed from channel sections. Strength requirements and testing].
  • [29] PN-G-15011:2011. Obudowa chodników odrzwiami podatnymi z kształtowników korytkowych. Strzemiona. [Road support by means of yielding frame sets constructed from channel sections. Shackles].
  • [30] PN-G-15533:1997. Górnicza obudowa indywidualna. Stojaki cierne. Wymagania i badania. [Single prop support. Friction props. Requirements and testing].
  • [31] PN-H-84042:2009/Az1:2012. Stale mikrostopowe na kształtowniki i akcesoria górnicze. [Micro-alloyed steel for mine equipment and sections].
  • [32] PN-H-93441-1:2013-12. Kształtowniki stalowe walcowane na gorąco dla górnictwa. Wymagania ogólne i badania. [Hot-rolled steel sections for mining. General requirements and testing].
  • [33] PN-H-93441-3:2004. Kształtowniki stalowe walcowane na gorąco dla górnictwa. Kształtowniki typu V. Wymiary. [Hot-rolled steel sections for mining. V sections. Dimensions].
  • [34] A. Pytlik, K. Stoiński, Odporność dynamiczna stalowych obudów odrzwiowych w świetle dotychczasowych badań. [Steel arch support dynamic resistance in the light of current studies], in: K. Rułka (Ed.), Stalowe obudowy odrzwiowe. Nowe rozwiązania konstrukcyjne i metody projektowania. [Steel frame support. New structural solutions and design methods], Główny Instytut Górnictwa, Katowice, 61-90 (2006).
  • [35] A. Pytlik, S. Prusek, W. Masny, A methodology for laboratory testing of rockbolts used in underground mines under dynamic loading conditions. SAIMM Journal of The Southern African Institute of Mining and Metallurgy 116(12), 1101-1110 (2016).
  • [36] DIN 21530-4:2016-09. Mine support – Part 4: Testing.
  • [37] PN-G-15021:2019-05. Obudowa wyrobisk górniczych. Odrzwia podatne z kształtowników korytkowych. Odrzwia łukowe podatne ŁP z kształtowników typu V. [Mine working support. Yielding frames constructed from channel sections. ŁP yielding arch frames constructed from V-type sections].
  • [38] UNE 22725:2007. Sliding steel profiles for roof support.
  • [39] J. Brodny, Identyfikacja parametrów pracy złącza ciernego stosowanego w górniczej obudowie podatnej wyrobisk korytarzowych. [Operational parameter identification of sliding joints employed in yielding gallery support systems]. Wydawnictwo Politechniki Śląskiej, Gliwice, (2012).
  • [40] J. Brodny, Analysis of operation of new construction of the frictional joint with the resistance wedge. Archives of Mining Sciences 57 (1), 209-227 (2012).
  • [41] J. Brodny, Analysis of operation of arch frictional joint loaded with the impact of freely falling mass. Studia Geotechnica et Mechanica 35 (1), 59-71 (2013).
  • [42] P. Horyl, R. Snuparek, M. Hlavackova, Loading capacity of yielding connections used in steel arch roadway sup-ports. In Proceedings of the Seventh International Symposium on Ground Support in Mining and Underground Construction, 461-470, Australian Centre for Geomechanics, (2013, May).
  • [43] P. Maršálek, P. Horyl, Modelling of bolted connection with flexible yokes used in mining industry. In AIP Conference Proceedings (1863, 1, 340008). AIP Publishing LLC, (2017, July).
  • [44] A. Pytlik, PhD thesis, Wpływ zginania na pracę ciernych złączy łukowych odrzwi ŁP przy obciążeniach statyc-znych i dynamicznych. [The influence of bending on yielding arch frame sliding joint operation under static and dynamic loads]. Główny Instytut Górnictwa, Katowice, (2001).
  • [45] A. Pytlik, Charakterystyka pracy ciernych złączy odrzwi obudowy ŁP przy obciążeniach statycznych i dynamicznych. [Operational characteristics of yielding arch frame support sliding joints under static and dynamic loads]. Prace Naukowe GIG 42, Główny Instytut Górnictwa, Katowice, (2002).
  • [46] M. Rotkegel, ŁPW steel arch support – designing and test results. Journal of Sustainable Mining 12 (1), 34-40 (2013).
  • [47] PN-EN ISO 80079-36:2016-07 - Explosive atmospheres – Part 36: Non-electrical equipment for explosive atmos-pheres – Basic method and requirements.
  • [48] Europejskie Technologie Górnicze Ltd., https://czh.pl/spolka/europejskie-technologie-gornicze/: accessed: 09.03.2020.
  • [49] K. Rułka (Ed.), Uproszczone zasady doboru obudowy odrzwiowej wyrobisk korytarzowych w zakładach górniczych wydobywających węgiel kamienny. [Simplified gallery working frame support selection principles for mining plants extracting hard coal]. Główny Instytut Górnictwa, Zakład Technologii Eksploatacji i Obudów Górniczych, Katowice, (2001).
  • [50] M. Michalak, K. Nurzyńska, A. Pytlik, K. Pacześniowski, Analysis of Deformation of Mining Chains Based on Motion Tracking. In International Symposium on Visual Computing, 588-596, Springer, Berlin, Heidelberg, (2012, July).
  • [51] Directive 2014/34/EU of the European Parliament and of the Council of 26 February 2014 on the harmonisation of the laws of the Member States relating to equipment and protective systems intended for use in potentially explosive atmospheres (recast) (OJEU L 96, 29.3.2014, p. 309).
  • [52] S. Nowak, Elektryczne i nieelektryczne urządzenia (Ex). [Electrical and non-electrical devices (Ex)], Automatic Systems Engineering, Gdańsk, (2015).
  • [53] A. Pytlik, Identyfikacja możliwych źródeł zapłonu atmosfery wybuchowej podczas badań łańcuchów i stojaków ciernych przy obciążeniu dynamicznym. [Identifying potential explosive atmosphere ignition sources during the testing of chains and sliding joints under dynamic loading], in: S. Prusek, J. Knechtel, B. Madeja-Strumińska (Eds.), Zwalczanie zagrożeń aerologicznych w kopalniach. [Aerological hazard prevention in mines], joint publication, Główny Instytut Górnictwa, Katowice, 184-197 (2012).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0dcb8502-34cd-4f60-afd3-fd81789aac0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.