PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Wpływ emisji komunikacyjnej na stężenie dwóch form węgla i rozkład ich masy względem wielkości cząstek w aerozolu atmosferycznym obszaru miejskiego

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Influence of Vehicular Traffic on Ambient Concentration and Mass Size Distribution of Two Fractions of Carbon in an Urban Area Atmospheric Aerosol
Języki publikacji
PL
Abstrakty
EN
Ambient particulate matter (PM) is a component of the natural environment and a certain number of particles that varies with time, having many different properties which also change over time, is constantly present in the air. It can be assumed that the scope of environmental effects of PM is the broadest among all air pollutants: it affects the human health, climate, ecological conditions and visibility. Organic carbon (OC) and elemental carbon (EC) are the two most important components of suspended dust. The continuously increasing road traffic intensity is highly correlated with increasing concentrations of both of these components in the air of urbanized areas all over the world. In spite of this, the amount of data on OC and EC concentrations in Poland is still insufficient, especially in the case of areas located close to busy roads. The aim of this study was to determine the influence of vehicular traffic on ambient concentrations of PM-related OC and EC, and their mass size distribution in a typical urban area of the Upper Silesia. PM samples were collected simultaneously at two sites located in the Katowice city. One of the selected measurement points was situated in the city centre and characterized so-called urban background. The second measurement point, located near the A4 motorway, was in the area directly exposed to the influence of traffic emission. Dust was sampled during two measurement periods (2–10 August and 15–22 September 2011) using thirteen-stage impactors – DEKATI Ltd. (DLPI, Dekati Low Pressure Impactor). Analysis for the content of OC and EC in the collected dust samples was carried out by means of a thermo-optical method with the use of a Sunset Laboratory OC/EC carbon analyzer. During the entire measurement program strict adherence to the rigorous requirements for quality control of the obtained results was ensured. Concentrations of PM1-, PM2.5- and PM10-related OC and EC in Katowice, near the A4 motorway, were close to values obtained in other parts of the world in different measurement periods, at traffic sites of similar characteristics. Also values of the concentration ratio of OC bound to PM10 and PM2,5 (or PM2,5) were similar to quantities determined in different locations. In Katowice, due to municipal emission and poor quality of vehicles travelling the roads, also the coarse fraction of dust was enriched in EC. This situation is unusual in comparison to other regions. The effect of emission from engines of the cars travelling the motorway manifested itself mainly by elevated EC concentrations compared to the urban background site. For TSP the EC concentration was higher, five times in the beginning of August and two times in the second half of September. The largest differences between EC concentrations in the location near the motorway and in the urban background area were observed for the PM0.06–0.108, PM0.108–0.17 and PM0.17–0.26 fractions. In both measurement periods, at the traffic site in Katowice, the maxima of mass size distribution of EC were in the diameter range characteristic for soot emitted from Diesel engines (0.108–0.26µm). The fact that the influence of exhaust emission from vehicles travelling the motorway on EC concentrations was more pronounced in the second half of September than in the first half of August, was caused by larger EC emission from various sources in Katowice during the period following summer holidays. Concentrations of organic carbon bound to TSP in both measurement periods in Katowice was only 10% higher in the urban traffic site than in the urban background site. The largest differences between OC concentrations near the motorway and in the urban background are observed in the ranges 0.06–0.17 and 1.0–2.5 µm. Maxima of the mass size distribution of PM-related OC, both at the urban traffic site and at the background site, were similar in both measurement periods. It was inferred that the small differences between OC concentrations in the traffic and the background site are caused by the process of secondary aerosol formation, less intensive near the motorway than in the urban site.
Rocznik
Strony
1623--1644
Opis fizyczny
Bibliogr. 54 poz., tab., rys.
Twórcy
  • Instytut Podstaw Inżynierii Środowiska PAN, Zabrze
  • Instytut Podstaw Inżynierii Środowiska PAN, Zabrze
  • Instytut Podstaw Inżynierii Środowiska PAN, Zabrze
  • Instytut Podstaw Inżynierii Środowiska PAN, Zabrze
Bibliografia
  • 1. Allen J.O., Mayo P.R., Hughes L.S. Salmon, L.G. Cass, G.R.: Emission of Size-Segregated Aerosols from On-Road Vehicles in the Caldecott Tunnel. Environmental Science and Technology 35, 4189–4197 (2001).
  • 2. Aymoz G., Jaffrezo J.L., Jacob V., Colomb A., George C.: Evolution of organic and inorganic components of aerosol during Saharan dust episode observed in the French Alps. Atmospheric Chemistry and Physics 4, 2499–2512 (2004).
  • 3. Blanchard P., Brook J.R., Brazal P.: Chemical characterization of the organic fraction of atmospheric aerosol at two sites in Ontario, Canada. Journal of Geophysical Research 107, ICC 10-1-ICC, 10–8 (2002).
  • 4. Cao J.J., Lee S.C., Ho K.F., Zou S.C., Fung K., Li Y., Watson J.G., Chow J.C.: Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl Delta Region, China. Atmospheric Environment 38, 4447–4456 (2004).
  • 5. Cess R.D.: Arctic aerosols: model estimates of interactive influences upon the surface-atmosphere clear-sky radiation budget. Atmospheric Environment 17, 2555–2564 (1983).
  • 6. Charlson R.J., Waggoner A.P., Thielke J.F.: Visibility protection for class I areas: the theoretical basis. Report No: PB-288842. US Department of Commerce, 1978.
  • 7. Chylek P., Ramaswamy V., Srivastava V.: Graphitic carbon content of aerosols, clouds, and snow, and its climatic implication. The Science of the Total Environment 37, 117–120 (1984).
  • 8. Cuiddihy R.C., Griffith W.C., McClellan O.: Health risk for light duty diesel vehicles. Environmental Science and Technology 18, 14–21 (1984).
  • 9. Ćwiklak K., Pastuszka J.S., Rogula-Kozłowska W.: Influence of Traffic on Particulate-Matter Polycyclic Aromatic Hydrocarbons in Urban Atmosphere of Zabrze, Poland. Polish Journal of Environmental Studies 18, 579–585 (2009).
  • 10. de Kok T.M.C.M., Driece H.A.L., Hogervorst J.G.F., Briedé J.J.: Toxicological Assessment of Ambient and Traffic-Related Particulate Matter: A Review of Recent Studies. Mutation Research 613, 103–122 (2006).
  • 11. Dockery D.C., Pope A, Xu X., Spengler J.D., Ware J.H., Fay M.E., Ferris B.G., Speizer F.E.: An association between air pollution and mortality in six US cities. The New England Journal of Medicine 329, 1753–1759 (1993).
  • 12. Dockery D.W., Pope III C.A.: Acute Respiratory Effects of Particulate Air Pollution. Annual Review of Public Health 15, 107–132 (1994).
  • 13. Dudzińska M.R.: Lotne związki organiczne w prywatnych i publicznych środkach transportu. Rocznik Ochrona Środowiska (Annual Set the Environment Protection), 13, 101–116 (2011).
  • 14. Friedlander S.K.: Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics. Oxford University Press, 2000.
  • 15. Geller M.D., Sardar S.B., Phuleria H., Fine P.M., Sioutas C.: Measurements of Particle Number and Mass Concentrations and Size Distributions in Tunnel Environment. Environmental Science and Technology 39, 8653–8663 (2005).
  • 16. Grosjean D, Friedlander S.K.: Formation of organic aerosol from cyclic olefins and diolefins, Advances in Environmental Science & Technology 9, 435–473 (1980).
  • 17. Haagen-Smit A.J.: Chemistry and Physiology of Los Angeles Smog. Industrial and Engineering Chemistry 44, 1342–1346 (1952).
  • 18. Harrison R.M., Yin J.: Sources and processes affecting carbonaceous aerosol in central England. Atmospheric Environment 42, 1413–1423 (2008).
  • 19. Heintzenberg J.: Fine particles in the global troposphere: A review. Tellus B 41, 149–160 (1989).
  • 20. Horvath H.: Atmospheric light absorption – a review. Atmospheric Environment 27A, 293–317 (1993).
  • 21. Jacobson M.C., Hansson H.-C., Noone K.J., Charlson R.J.: Organic atmospheric aerosols: Review and state of science. Reviews of Geophysics 38, 267–294 (2000).
  • 22. Kinney P.L., Aggarwal M., Northridge M.E., Janssen N.A.H., Shepard P.: Airborne concentrations of PM2.5 and diesel exhaust particles on Harlem sidewalks: A community-based pilot study. Environmental Health Perspectives 108, 213–1218 (2000).
  • 23. Kirchstetter T.W., Harley R.A., Kreisberg N.M., Stolzenburg M.R., Herring S.V.: On-Road Measurement of Fine Particles and Nitrogen Oxide Emission from Light- and Heavy-Duty Motor Vehicles. Atmospheric Environment 33, 2955–2968 (1999).
  • 24. Klejnowski K., Rogula-Kozłowska W., Błaszczyk J., Rogula-Kopiec P.: Węgiel organiczny i elementarny w submikronowych cząstkach pyłu zawieszonego w województwie śląskim. Ochrona Powietrza w Teorii i Praktyce Tom 1. IPIŚ PAN. Zabrze 2012.
  • 25. Larsen B.R., Gilardoni S., Stenström K., Niedzialek J., Jimenez J., Belis, C.A.: Sources for PM air pollution in the Po Plain, Italy: II. Probabilistic uncertainty characterization and sensitivity analysis of secondary and primary sources. Atmospheric Environment 50, 203–213 (2012).
  • 26. Lee S.C., Cheng Y., Ho K.F., Cao J.J., Louie P.K.-K., Chow J.C.: PM1.0 and PM2.5 characteristics in the roadside environment of Hong Kong. Aerosol Science and Technology 40, 157–165 (2006).
  • 27. Lewandowska A., Staniszewska M., Falkowska L., Witkowska A., Bełdowska M., Machuta M, Mróz D.: Węgiel elementarny i organiczny, benzo(a)piren oraz alkilofenole w funkcji rozmiarów cząstek aerozoli w zurbanizowanej strefie brzegowej Zatoki Gdańskiej. Ochrona Powietrza w Teorii i Praktyce Tom 2. IPIŚ PAN. Zabrze 2012.
  • 28. Louie P.K.K., Chow J.C., Chen L.-W.A., Watson J.G., Leung G., Sin D.W.M.: PM2.5 chemical composition in Hong Kong: urban and regional variations. Science of the Total Environment 338, 267–281 (2005).
  • 29. Pakkanen T.A., Kerminen V.M., Loukkola K., Hillamo R.E., Aarnio P., Koskentalo T., Maenhaut W.: Size distributions of mass and chemical componens in street-level and rooftop PM1 particles in Helsinki. Atmospheric Environment 37, 1673–1690 (2003).
  • 30. Parlament Europejski i Rada Unii Europejskiej Dyrektywa 2008/50/WE z dnia 21 maja 2008 r. w sprawie jakości powietrza i czystszego powietrza dla Europy (źródło: http://eur-lex.europa.eu/).
  • 31. Pawłowski L.: Rola monitoringu środowiska w realizacji zrównoważonego rozwoju. Rocznik Ochrona Środowiska (Annual Set the Environment Protection), 13, 333–346 (2012).
  • 32. Piątkowski P., Bohdal T.: Badanie właściwości ekologicznych silnika samochodowego o zapłonie iskrowym zasilanego mieszanką propan-butan. Rocznik Ochrona Środowiska (Annual Set the Environment Protection), 13, 607–618 (2012).
  • 33. Pierson W.R., Brachaczek W.W.: Particulate Matter Associated with Vehicles on the Road. II. Aerosol Science and Technology 2, 1–40 (1983).
  • 34. Rogula P., Klejnowski K., Krasa A., Rogula-Kozłowska W.: Wstępne badania zawartości węgla organicznego i węgla elementarnego w PM10 w Zabrzu. Ochrona powietrza w teorii i praktyce Tom 2. IPIŚ PAN. Zabrze 2008.
  • 35. Rogula-Kozłowska W., Klejnowski K., Rogula-Kopiec P., Mathews B., Szopa S.: A study on the seasonal mass closure of ambient fine and coarse dusts in Zabrze, Poland. Bulletin of Environmental Contamination and Toxicology 88, 722–729 (2012).
  • 36. Rogula-Kozłowska W., Pastuszka J.S., Talik E.: Influence of vehicular traffic on concentration and particle surface composition of PM10 and PM2.5 in Zabrze, Poland. Polish Journal of Environmental Studies 17, 539–548 (2008).
  • 37. Rogula-Kozłowska W., Klejnowski K.: Submicrometer Aerosol in Rural and Urban Backgrounds in Southern Poland: Primary and Secondary Components of PM1. Bulletin of Environmental Contamination and Toxicology, w druku (2013).
  • 38. Rogula-Kozłowska W., Pastuszka J.S., Talik E.: Właściwości aerozolu ze źródeł komunikacyjnych. Prace i Studia Nr 80. IPIŚ PAN. Zabrze 2011.
  • 39. Sahu M., Hu S., Ryan P.H., Le Masters G., Grinshpun S.A., Chow J.C., Biswas P.: Chemical compositions and source identification of PM2.5 aerosols for estimation of a diesel source surrogate. Science of the Total Environment 409, 2642–2651 (2011).
  • 40. Salma I., Chi X., Maenhaut W.: Elemental and organic carbon in urban canyon and background environments in Budapest, Hungary. Atmospheric Environment 38, 27–36 (2004).
  • 41. Seaton A., Mac Nee W., Dolandson K., Godden D.: Particulate air pollution and acute health effects. Lancet 345, 176–78 (1995).
  • 42. Seinfeld J.H., Pandis S.N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley & Sons, Inc. New York 1998.
  • 43. Sillanpää M., Hillamo R., Saarikoski S., Frey A., Pennanen A., Makkonen U., Spolnik Z., Van Grieken R., Braniš M., Brunekreef B., Chalbot M.C., Kuhlbusch T., Sunyer J., Kerminen V.M., Kulmala M., Salonen R.O.: Chemical composition and mass closure of particulate matter at six urban sites in Europe. Atmospheric Environment 40, 212–223 (2006).
  • 44. Szałata Ł., Zwoździak J.: Analiza SWOT jako podstawowe narzędzie w zarządzaniu środowiskiem. Rocznik Ochrona Środowiska (Annual Set the Environment Protection), 13, 1105–1114 (2011).
  • 45. Takahashi K., Minoura H., Sakamoto K.: Chemical composition of atmospheric aerosols in the general environment and around a trunk road in the Tokyo metropolitan area. Atmospheric Environment 42, 113–125 (2008).
  • 46. Terzi E., Argyropoulos G., Bougatioti A., Mihalopoulos N., Nikolaou K., Samara C.: Chemical composition and mass closure of ambient PM10 at urban sites. Atmospheric Environment 44, 2231–2239 (2010).
  • 47. Viana M., Kuhlbusch T.A.J., Querol X., Alastuey A., Harrison R.M., Hopke P.K., Winiwarter W., Vallius W., Szidat S., Prévôt A.S.H., Hueglin C., Bloemen H., Wåhlin P., Vecchi R., Miranda A.I., Kasper-Giebl A., Maenhaut W., Hitzenberger R.: Source apportionment of particulate matter in Europe: A review of methods and results. Journal of Aerosol Science 39, 827–849 (2008).
  • 48. Viana M., Maenhaut W., ten Brink H.M., Chi W., Weijers E., Querol X., Alastuey A., Mikuska P., Vecera Z.: Comparative analysis of organic and elemental carbon concentrations in carbonaceous aerosols in three European cities. Atmospheric Environment 41, 5972–5983 (2007).
  • 49. Viidanoja J., Kerminen V.-M., Hillamo R.: Measuring the size distribution of atmospheric organic and black carbon using impactor sampling coupled with thermal carbon analysis: Method development and uncertainties. Aerosol Science and Technology 36, 607–616 (2002).
  • 50. Vogt R., Kirchner U., Scheer v., Hinz K.P., Trimborn A., Spengler B.: Identification of diesel exhaust particles at an autobahn, urban and rural location using single-particle mass spectrometry. Journal of Aerosol Science 34, 319–337 (2003).
  • 51. Weingartner E., Keller C., Stahel W.A., Burtscher H., Batenspelger U.: Aerosol Emission in a Road Tunnel. Atmospheric Environment 31, 451–462 (1997).
  • 52. Went F. W.: Blue hazes in the atmosphere. Nature 187, 641–643 (1960).
  • 53. Whitby E.R., McMurry P.H.: Modal Aerosol Dynamics Modeling. Aerosol Science and Technology 27, 673–688 (1997).
  • 54. Yin J., Harrison R.M.: Pragmatic mass closure study for PM1.0, PM2.5 and PM10 at roadside, urban background and rural sites. Atmospheric Environment 42, 980–988 (2008).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0cd98c79-873f-4c10-893f-d5430f543948
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.