PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Review on Additive Manufacturing – Methods, Materials, and its Associated Failures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, additive manufacturing (AM) has surpassed traditional machining in the realm of emerging manufacturing. In the case of conventional machining, where the material is removed by different processes (subtractive manufacturing), there is a possibility of warping and internal stress development. Rapid prototyping is another option to avoid all the drawbacks of conventional machining in terms of manufacturing cost, time, accuracy, and quality. Rapid prototyping of a product by adding material (additive manufacturing) is gaining commercial traction. Additive manufacturing is frequently employed for the fabrication and bulk customization of all kinds of intricate geometrical designs those are absurd by traditional manufacturing techniques. Additive manufacturing techniques are broadly divided into four categories: (a) material extrusion, (b) chain polymerization, (c) laser or electron beam assisted sintering, and (d) direct writing-based processes. This article is a cutting-edge review that focuses on additive manufacturing processes and materials used in additive manufacturing. The process parameters for experimentation are chosen based on the application for which the part is designed. Some input process factors influence others for a specific response, and these critical process parameters are identified and optimized. This paper also gives a synopsis of failures associated with some additive manufacturing methods and their preventive actions.
Twórcy
  • College of Engineering, Pune, 411005, India
  • College of Engineering, Pune, 411005, India
autor
  • College of Engineering, Pune, 411005, India
Bibliografia
  • 1. Rejeski D., Zhao F., Huang Y. Research needs and recommendations on environmental implications of additive manufacturing. Additive Manufacturing 2018; 19: 21–28.
  • 2. Matta A.K., Raju D.R., Suman K.N.S. The Integration of CAD/CAM and Rapid Prototyping in Product Development: A Review. Materials Today 2015; 2(4-5): 3438–3445.
  • 3. Eyers D.R., Potter A.T. Industrial Additive Manufacturing: A manufacturing systems perspective. Computers in Industry 2017; 92: 208–218.
  • 4. Serra T., Planell J.A., Navarro M. High-resolution PLA-based composite scaffolds via 3-D printing technology. Journal of Acta Biomaterialia 2013; 9: 5521–5530.
  • 5. Sathish T., Vijayakumar M.D., Ayyangar A.K. Design and Fabrication of Industrial Components Using 3D Printing. Materials Today Proceedings 2018; 5(6): 14489–14498.
  • 6. Putame G., Terzini M., Carbonaro D., Pisani G., Serino G., Meglio F., Castaldo C., and Massai D. Application of 3D Printing technology for design and manufacturing of customized components for a mechanical stretching bioreactor. Journal of Healthcare Engineering 2019. https://doi. org/10.1155/2019/3957931
  • 7. Vaezi M., Seitz H., Yang S. A review on 3D micro- additive manufacturing technologies. The International Journal of Advanced Manufacturing Technology 2013; 67(5): 1721–1754.
  • 8. Lee D., Kim H., Sim J., Lee D., Cho H., Hong D. Trends in 3D Printing Technology for Construction Automation Using Text Mining. International Journal of Precision Engineering and Manufacturing 2019; 20:871–882. https://doi.org/10.1007/ s12541-019-00117-w
  • 9. Macdonald E., Salas R., Espalin D., Perez M., Aguilera E., Muse D., and Wicker R. 3d Printing for the Rapid Prototyping of Structural Electronics. IEEE Xplore 2014; 2. https://doi.org/10.1109/AC- CESS.2014.2311810
  • 10. Sheoran A. and Kumar H. Fused Deposition modelling process parameters optimization and effect on mechanical properties and part quality: Review and reflection on present research. Journal of Materials Today: Proceedings 2020; 21 (3): 1659–1672. https://doi.org/10.1016/j.matpr.2019.11.296.
  • 11. Tao Y., Yin Q., and Li P. An Additive Manufacturing Method Using Large-Scale Wood Inspired by Laminated Object Manufacturing and Plywood Technology. Polymers 2021; 13: 144. https://doi. org/10.3390/polym13010144
  • 12. Bose S., Vahabzadeh S., and Bandyopadhyay A. Bone tissue engineering using 3D printing. Materials Today 2013; 16 (12): 1369–7021/06. http:// dx.doi.org/10.1016/j.mattod.2013.11.017
  • 13. Mohamed O.A., Masood S.H., Bhowmik J.L. Optimization of fused deposition modeling proces parameters: a review of current research and future prospects. Journal of Advanced Manufacturing 2015; 3: 42–53.
  • 14. Ngo T., Kashani A., Imbalzano G., Nguyen K., Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications, and challenge. Journal of Composites Part B 2018; 143: 172–196.
  • 15. Dey A., Yodo N. A systematic survey of FDM process parameter optimization and their influence on part characteristics. Journal of Manufacturing and Materials Processing 2019; 3: 64. https://doi. org/10.3390/jmmp3030064
  • 16. Hallmann M., Schleich B., Wartzack S. A method for analyzing the influence of process and design parameters on the build time of additively manufactured components. Proceedings of the Design Society: International Conference on Engineering Design 2019; 1(1): 649–658. https://doi.org/10.1017/ dsi.2019.69.
  • 17. Torres J., Cotelo J., Karl J., Gordon A.P. Mechanical property optimization of FDM PLA in shear with multiple objectives. JOM 2015; 67: 1183–1193.
  • 18. Laeng J., Khan Z.A., Khu S. Optimizing flexible behaviour of bow prototype using Taguchi approach. Journal of Applied Sciences 2006; 6: 622–630.
  • 19. Liu X., Zhang M., Li S., Si L., Peng J., Hu Y. Me- chanical property parametric appraisal of fused deposition modeling parts based on the gray Taguchi method. International Journal of Advanced Manufacturing Technology 2017; 89: 2387–2397.
  • 20. Lee B. H., Abdullah J., Khan Z. A. Optimization of rapid prototyping parameters for production of flexible ABS object. Journal of Materials Processing Technology 2005; 169: 54–61.
  • 21. Raju M., Gupta M.K., Bhanot N., Sharma V.S. A hybrid PSO–BFO evolutionary algorithm for optimization of fused deposition modelling process parameters. Journal of Intelligent Manufacturing 2018: 1–16.
  • 22. Deng X., Zeng Z., Peng B., Yan S., Ke W. Mechanical properties optimization of poly-ether-ether- ketone via fused deposition modelling. Journal of Materials 2018; 11: 216.
  • 23. Srivastava M., Rathee S, Maheshwari S., Kundra T. Multi-objective optimization of fused deposition modelling process parameters using RSM and fuzzy logic for build time and support material. Internation- al Journal of Rapid Manufacturing 2018; 7: 25–42.
  • 24. Zaldivar R., Witkin D., McLouth T., Patel D., Schmitt K., Nokes J. Influence of processing and orientation print effects on the mechanical and thermal behaviour of 3D-Printed ULTEM9085 Material. Additive Manufacturing 2017; 13: 71–80.
  • 25. Chohan J.S., Singh R., Boparai K.S., Penna R., Fraternali F. Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications. Journal of Composites B Eng 2017; 117: 138–49.
  • 26. Wang X., Jiang M., Zhou Z., Gou J., Hui D. 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering. 2017; 110: 442–58.
  • 27. Hull C.W. Apparatus for production of three-dimensional objects by stereolithography. US Patent 4: 575; 330.
  • 28. Prinz F.B., Atwood C.L., Aubin R.F. JTEC/WTEC panel report on rapid prototyping in Europe and Jappn. Rapid Prototyping Association of the socjety of Manufacturing Engineers (Loyala College in Maryland). 1997; 1.
  • 29. Dizon J., Espera Jr.A., Chen Q., Advincula R. Mechanical characterization of 3D-printed polymers. Journal of Additive Manufacturing 2018; 20: 44–67.
  • 30. Yang Y., Li L., Zhao J. Mechanical property modeling of photosensitive liquid resin in stereolithog raphy additive manufacturing: bridging degree of cure with tensile strength and hardness. Journal of Materials and Design 2019; 162: 418–428.
  • 31. Yuki Suzuki Y., Tahara H., Michihata M., Takamasu K., Takahashi S. Evanescent Light Exposing System under Nitrogen Purge for Nano-Stereolithography. Procedia CIRP 2016; 42: 77–80. https://doi. org/10.1016/j.procir.2016.02.192
  • 32. Heller C., Schwentenwein M., Russmueller G., Varga F., Stampfl J., Liska R. Vinyl esters: low cy- totoxicity monomers for the fabrication of biocom- patible 3d scaffolds by lithography based additive manufacturing. Journal of Polymer Science (Part A: Polymer Chemistry) 2009; 47 (4): 6941–6945.
  • 33. Lim K.S., Castilho M.D., Malda J., Levato R., Alcala-Orozco C.R., Melchels F.P.W., Gawlitta D., Hooper G.J., Woodfield T.B.F., Dorenmalen K., Costa P.F. Bio-resin for high-resolution lithography-based biofabrication of complex cell-laden constructs. Journal` of Biofabrication 2018; 10(3): 034101. https://doi.org/10.1088/1758-5090/aac00c.
  • 34. Gowda R., Udayagiri C., and Narendra D. Studies on the Process Parameters of Rapid Prototyping Technique (Stereolithography) for the Betterment of Part Quality. International Journal of Manufacturing Engineering 2014. https://doi. org/10.1155/2014/804705
  • 35. Akilesh M., Elango P., Devanand A., Soundararajan R., Varthanan P. Optimization of selective laser sintering process parameters on surface quality. 3D Printing and Additive Manufacturing Technologies Journal 2018: 141–157.
  • 36. Kazemi M., Rahimi A. Stereolithography proces optimization for tensile strength improvement of products. Rapid Prototyping Journal 2018; 24(4): 00-00. https://doi.org/10.1108/RPJ-05-2015-0049
  • 37. Melchels F.P.W., Feijen J., Grijpma D.W. A review on stereolithography and its applications in biomedical engineering. Journal of Biomaterials 2010; 31(24): 6121–3.
  • 38. Manapat J.Z., Chen Q., Ye P., Advincula R.C. 3D printing of polymer nanocomposites via stereo-lithography. Journal of Macromolecular Materials and Engineering 2017; 302(9): 1600553.
  • 39. Gibson I., Rosen D., Stucker B. Sheet lamination processes. Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. New York, NY: Springer New York 2015: 219–44.
  • 40. Vaezi M., Seitz H., Yang S. A review on 3D micro-additive manufacturing technologies. International Journal of Advance Manufacturing Technology 2013; 67: 1721–1754. https://doi.org/10.1007/ s00170-012-4605-2
  • 41. Gibson I., Rosen D.W., Stucker B. Additive Manufacturing Methodologies: Rapid Prototyping to Direct Digital Manufacturing, Springer 2010, New York.
  • 42. Singh S., Sachdeva A., Sharma V. Optimization of selective laser sintering process parameters to achieve the maximum density and hardness in polyamide parts. Journal of Progress in Additive Manufacturing 2017; 2:19–30. https://doi.org/10.1007/ s40964-017-0020-4
  • 43. Kim G., Lee S., Kim H., Yang D., Kim Y., Kyung Y., Kim C., Choi S., Kim B., Ha H., Kwon S., Kim N. Three-Dimensional Printing: Basic Principles and Applications in Medicine and Radiology. Korean Journal of Radiology 2016; 17(2): 182-197.
  • 44. Ruban W., Vijayakumar V., Dhanabal P., and Pridhar T. Effective process parameters in selective laser sintering. International Journal of Rapid Manufacturing 2014; 4 (2/3/4). https://doi.org/10.1504/ IJRAPIDM.2014.066036
  • 45. Kim G., Oh Y. A benchmark study on rapid prototyping processes and machines: quantitative comparisons of mechanical properties, accuracy, roughness, speed, and material cost. Proceedings of the Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture 2008; 22: 201–215.
  • 46. Williams J., Adewunmi A., Schek R., Flanagan C., Krebsbach P., Feinberg S., Hollister S., Das S. Bone tissue engineering using polycaprolactone scaf-folds fabricated via selective laser sintering. Journal of Biomaterials 2005; 26: 4817–4827. https:// doi.org/10.1016/j.biomaterials.2004.11.057.
  • 47. Duan B., Wang M., Zhou W., Cheung W., Li Z., Lu W. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Journal of Acta Biomaterialia 2010; 6(12): 4495–4505.
  • 48. Pereira T.F., Silva M., Oliveira M., Maia I., Silva J., Costa M., Thire R. Effect of process parameters on the properties of selective laser sintered Poly(3-hydroxybutyrate) scaffolds for bone tissue engineering. Journal of Virtual and Physical Prototyping 2012; 7: 275–285.
  • 49. Dass A. and Moridi A. State of the Art in Directed Energy Deposition: From Additive Manufacturing to Materials Design. Journal of Coatings 2019; 9: 418. https://doi.org/10.3390/coatings9070418.
  • 50. Greer C., Nycz A., Noakes M., Richardson B., Post B., Kurfess T., Love L. Introduction to the design rules for Metal Big Area Additive Manufacturing. Journal of Additive Manufacturing 2019; 27: 159–166.
  • 51. Heralic A., Christiansson A.K., Lennartson B. Height control of laser metal-wire deposition based on iterative learning control and 3D scanning. Journal of Optics and Lasers in Engineering 2012; 50: 1230–1241.
  • 52. Wang X., Jiang M., Zhou Z., Gou J., Hui D. 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering 2017; 110: 442–58.
  • 53. Gibson I., Rosen D., Stucker B. Directed Energy Deposition Processes. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. New York, NY: Springer New York 2015: 245–68.
  • 54. Bourell D., Kruth J., Leu M., Levy G., Rosen D., Beese A., Clare A. Materials for additive manufacturing. CIRP Annals - Manufacturing Technology 2017; 66: 659–681.
  • 55. Lee J., An J., Chua C. Fundamentals and applications of 3D printing for novel materials. Journal of Applied Materials Today 2017; 7: 120–133.
  • 56. Nath S. and Nilufar S. An Overview of Additive Manufacturing of Polymers and Associated Composites. Journal of Polymers 2020; 12: 2719. https://doi.org/10.3390/polym12112719
  • 57. Ni F., Wang G., Zhao H. Fabrication of water- soluble poly (vinyl alcohol)-based composites with improved thermal behavior for potential three-dimensional printing application. Journal of Applied Polymer Science 2017; 134. https://doi. org/10.1002/app.44966.
  • 58. Han Y., Kim J. A study on the mechanical properties of knit fabric using 3D printing-Focused on PLA, TPU Filament. Journal of Fashion Business 2018; 22: 93–105.
  • 59. Xiao J., Gao Y., The manufacture of 3D printing of medical-grade TPU. Journal of Progress in Additive Manufacturing 2017; 2: 117–123.
  • 60. Amado Becker AF, Characterization and prediction of sls processability of polymer powders with respect to powder flow and part warpage. Doctoral thesis, 2016, ETH Zurich, Switzerland.
  • 61. Xiao. L, Wang B., Yang G., and Gauthier M. Poly (lactic acid)-based biomaterials: synthesis, modification and applications. Biomedical Science Engineering and Technology 2006: 247–282.
  • 62. Aworinde A., Taiwo O., Adeosun S., Akinlabi E., Jonathan H., Olayemi O., Joseph O. Biodegradation profiles of chitin, chitosan and titanium-reinforced polylactide biocomposites as scaffolds in bone tis- sue engineering. Arab Journal of Basic and Applied Sciences 2021; 28(1): 351–359. https://doi.org/10. 1080/25765299.2021.1971865
  • 63. Gordon A.P., Torres F., Cole M., Owji A., DeMastry Z. An approach for mechanical property optimization of fused deposition modeling with polylactic acid via design of experiments. Rapid Prototyping Journal 2016; 22: 1–18.
  • 64. Pfeifer T., Koch C., Van Hulle L., Capote G.A. M., Rudolph N. Optimization of the FDM additive manufacturing process. In Proceedings of the SPE ANTEC Indianapolis, Indianapolis, IN, USA, 22–25 May 2016: 22–29.
  • 65. Chacona J.M., Caminerob M.A., García-Plazab E., Nunezb P.J. Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Journal of Materials and Design 2017; 124: 143–157.
  • 66. Zur P., Kolodziej A., Baier A. and Kokot G. Optimization of ABS 3D-Printing Method and Parameters. European Journal of Engineering Science and Technology 2020; 3(1): 44–51.
  • 67. Bala A.S., Wahab S.B., Ahmad M.B., Elements and materials improve the FDM products: A review. Advanced Engineering Forum 2016; 16: 33–51. https:// doi.org/10.4028/www.scientific.net/AEF.16.33
  • 68. Wu W., Geng P., Zhao J., Zhang Y., Rosen D., Zhang H. Manufacture and thermal deformation analysis of semicrystalline polymer polyether ether ketone by 3D printing. Journal of Materials Research In- novations 2014; 18: 5–12. https://doi.org/10.1179/1432891714Z.000000000898
  • 69. Wu W., Geng P., Li G., Zhao D., Zhang H., Zhao J. Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS. Journal of Materials 2015; 8: 5834–5846.
  • 70. Mohammad V., Yang S. Extrusion-based additive manufacturing of PEEK for biomedical applications. Journal of Virtual Physical Prototyping 2015; 10: 1–13.
  • 71. Rahman K., Letcher T., Reese T. Mechanical properties of additively manufactured PEEK components using fused filament fabrication. (IMECE) in Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition, Houston, Texas 2015.
  • 72. Gianluca C., Alberta L., Barbara D., Alessio L., Giuseppe R., Silvia F. Engineering thermoplastics for additive manufacturing: A critical perspective with experimental evidence to support functional applications. Journal of Applied Biomaterials and Fundamental Materials 2017; 15: 10–18.
  • 73. Klift F., Koga Y., Todoroki, A., Ueda M., Hirano, Y., Matsuzaki R. 3D Printing of Continuous Carbon Fibre Reinforced Thermo-Plastic (CFRTP) Tensile Test Specimens. Open J. Compos. Mater. 2016; 6: 18–27.
  • 74. Matsuzaki R., Ueda M., Namiki M., Jeong T.-K., Asahara H., Horiguchi K., Nakamura T., Todoroki A., Hirano Y. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci. Rep. 2016; 6: 23058.
  • 75. Li N., Li Y., Liu S. Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. J. Mater. Process. Technol. 2016; 238: 218–225.
  • 76. Hao W., Liu Y., Zhou H., Chen H., Fang D. Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites. Polym. Test. 2018; 65: 29–34.
  • 77. Shi B., Shang Y., Zhang P., Cuadros A.P., Qu J., Sun B., Gu B., Chou T.-W., Fu K.K. Dynamic Capillary- Driven Additive Manufacturing of Continuous Carbon Fiber Composite. Matter 2020; 2: 1594–1604.
  • 78. Zawaski C.E., Chatham C.A., Wilts E.M., Long T.E., Williams C.B. Using fillers to tune material properties of an ion-containing semi-crystalline poly (ethylene glycol) for fused filament fabrication additive manufacturing. Addit. Manuf. 2021; 39: 101844.
  • 79. Shevtsova T., Cavallaro G., Lazzara G., Milioto S., Donchak V., Harhay K., Korolko S., Budkowski A., Stetsyshyn Y. Temperature-responsive hybrid nanomaterials based on modified halloysite nano- tubes uploaded with silver nanoparticles. Colloids urf. A Physicochem. Eng. Asp. 2022; 641: 128525.
  • 80. Kalay S., Stetsyshyn Y., Donchak V., Harhay K., Lishchynskyi O., Ohar H., Panchenko Y., Voronov S., Çulha M. pH-Controlled fluorescence switching in water-dispersed polymer brushes grafted to modified boron nitride nanotubes for cellular imaging. Beilstein J. Nanotechnol 2019; 10: 2428–2439.
  • 81. Sawallisch, K. Compounding of Sheet Molding Compound. Polym. Technol. Eng. 1984; 23: 1–36.
  • 82. Injection Molding Handbook; Rosato, D.V., RosatoD.V., Rosato M.G., (Eds.) Springer: Boston, MA, USA, 2000.
  • 83. Poslinski A.J., Ryan M.E., Gupta R.K., Seshadri S.G., Frechette F.J. Rheological behavior of filled polymeric systems I. Yield stress and shear-thinning effects. J. Rheol. 1988; 32: 703–735.
  • 84. Xie Z., Wu X., Giacomin A.J., Zhao G., Wang W. Suppressing shrinkage/warpage of PBT injection molded parts with fillers. Polym. Compos. 2018; 39: 2377–2384.
  • 85. Spoerk M., Sapkota J., Weingrill G., Fischinger T., Arbeiter F., Holzer C. Shrinkage and warpage optimization of expanded-perlite-filled polypropylene composites in extrusion-based additive manufacturing. Macromol. Mater. Eng. 2017; 302: 1700143.
  • 86. Khatri B., Lappe K., Noetzel D., Pursche K., Hanemann T. A 3D-printable polymer-metal softmagnetic functional composite – development and characterization. Materials 2018; 11: 189.
  • 87. Frazier W.E. Metal additive manufacturing: A review. Journal of Materials Engineering and Performance 2014; 23: 1917–1928.
  • 88. Bajaj P., Hariharan A., Kini A., Kurnsteiner P., Raabe D., Jagle E.A. Steels in additive manufacturing: A review of their microstructure and properties. Journal of Materials and Engineering: A 2020; 772: 138633. https://doi.org/10.1016/j. msea.2019.138633
  • 89. Nesma T., Aboulkhair, Simonelli M., Parry L., Ashcroft I., Tuck C., Hague R. 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting. Journal ofProgress in Materials Science 2019; 106: 100578.
  • 90. Ataee A., Li Y., Song G., Wen C. Metal scaffolds processed by electron beam melting for biomedical applications. Metallic Foam Bone 2017; 83–110. http:// dx.doi.org/10.1016/B978-0-08-101289-5.00003-2
  • 91. Graybill B., Li M., Malawey D., Ma C., Alvarado- Orozco J.M., Martinez-Franco E. Additive manufac- turing of nickel-based superalloys. In Proceedings of the ASME 2018 13th International Manufacturing Science and Engineering Conference MSEC 2018, College Station, TX, USA; Vol. 1
  • 92. Ponnusamy P., Rashid R., Masood S., Ruan D., and Palanisamy S. Mechanical Properties of SLM- Printed Aluminium Alloys: A Review. Journal of Materials 2020; 13: 4301. https://doi.org/10.3390/ ma13194301
  • 93. Pacurar R., Pacurar A., Pop S. Designing of an in- novative extrusion system for metallic parts made by desktop 3D printing method. MATEC Web Conf. 2018; 178: 2009.
  • 94. Gibson M.A., Mykulowycz N.M., Shim J., Fontana R., Schmitt P., Roberts, A., Ketkaew, J., Shao, L., Chen W., Bordeenithikasem P. 3D printing metals like thermoplastics: Fused filament fabrication of metallic glasses. Mater. Today 2018; 21: 697–702.
  • 95. Liu B., Wang Y., Lin Z., Zhang T. Creating metal parts by fused deposition modeling and sintering. Mater. Lett. 2020; 263: 127252.
  • 96. Falck R., Goushegir S., dos Santos J., Amancio-Filho S. Add joining: A novel additive manufacturing approach for layered metal-polymer hybrid structures. Mater. Lett. 2018; 217: 211–21.
  • 97. Falck R., Dos Santos J.F., Amancio-Filho S.T. Microstructure and mechanical performance of additively manufactured aluminum 2024-T3/acrylonitrile butadiene styrene hybrid joints Using an AddJoining Technique. Materials 2019; 12: 864.
  • 98. Falck R.M.M. A new additive manufacturing technique for layered metal-composite hybrid structures. Ph.D. Thesis, Technische Universität Hamburg, Hamburg, Germany, 2020.
  • 99. Deckers J., Vleugels J., Kruth J. P. Additive Manufacturing of Ceramics: A Review. Journal of Ceramic Science and Technology 2014; 05 (4): 245– 260. https://doi.org/10.4416/JCST2014-00032
  • 100. Zhang X., Wub X., Shi J. Additive manufacturing of zirconia ceramics: a state-of-the-art review. Journal of materials research and technology 2020; 9(xx): 9029–9048.
  • 101. Silva N.R., Witek L, Coelho P, Thompson V.P., Rekow E.D., Smay J. Additive CAD/CAM process for dental prostheses. Journal of Prosthodont 2011; 20(2): 93–6. https://doi.org/10.1111/j.1532- 849X.2010.00623.x
  • 102. Cappi B., Ozkol E., Ebert J., Telle R. Direct inkjet printing of Si3N4: Characterization of ink, green bodies and microstructure. Journal of the European Ceramic Society 2008; 28: 2625–2628.
  • 103. Dermeik B. and Travitzky N. Laminated Object Manufacturing of Ceramic-Based Materials. Journal of Advanced Engineering Materi als 2020; 2000256. https://doi.org/10.1002/ adem.202000256W.
  • 104. Haixi Wu, Zhonghua Yu, Yan Wang. Experimental study of the process failure diagnosis in additive manufacturing based on acoustic emission. Measurement 2019; 136: 445–453. https://doi.org/10.1016/j.measurement.2018.12.067
  • 105. Wang Z., Xie M., Li Y., Zhang W., Yang C., Kollo L., Eckert J., and Prashanth K. Premature failure of an additively manufactured material. NPG Asia Materials 2020; 12: 30. https://doi.org/10.1038/ s41427-020-0212-0
  • 106. Tridello A., Niutta C., Berto F., Qian G., Paolino D., Fatigue failures from defects in additive manufactured components: A statistical methodology for the analysis of the experimental results. Fatigue Fract Eng Mater Struct. 2021; 44:1944– 1960. https://doi.org/10.1111/ffe.13467
  • 107. Keshavarzan M., Kadkhodaei M., Badrossamay M., Ravari M., Investigation on the failure mecha- nism of triply periodic minimal surface cellular structures fabricated by Vat photopolymerization additive manufacturing under compressive loadings. Mechanics of Materials 2020; 140: 103150.
  • 108. Nichlas Brown. Common failures in amateur 3D printing: Becoming familiar with and improving fused filament fabrication processes. Technical communications, Undergraduate Research in MSE 2020: 1. https://doi.org/10.6069/CF0T-FH17.
  • 109. Attene M. As-exact-as-possible repair of unprint- able stl files. Rapid Prototyping Journal 2016; 24(5): 855–864. https://doi.org/10.1108/RPJ-11- 2016-0185.
  • 110. Booth J., Alperovich J., Chawla P., Ma J., Reid T., Ramani K. The design for additive manufacturing worksheet. Journal of Mechanical Design 2017; 139(10): 100904. https://doi.org/10.1115/1.4037251.
  • 111. Budinoff H., McMains S. Will it print: a manufacturability toolbox for 3d printing. International Journal on Interactive Design and Manufacturing (IJIDeM) 2021; 15: 613–630.
  • 112. Decker N., Huang Q., Geometric accuracy prediction for additive manufacturing through machine learning of triangular mesh data. In: Additive Manufacturing; Manufacturing Equipment and Systems; Bio and Sustainable Manufacturing, International Manufacturing Science and Engineering Conference 2019. doi:10.1115/MSEC2019-3050.
  • 113. Khanzadeh M., Rao P., Jafari-Marandi R., Smith B., Tschopp M., Bian L. Quantifying geometric accuracy with unsupervised machine learning: using self-organizing map on fused filament fabrication additive manufacturing parts. Journal of Manufacturing Science and Engineering 2018; 140 (3): 031011. https://doi.org/10.1115/1.4038598.
  • 114. Shen Z., Shang X., Zhao M., Dong X., Xiong G., Wang F. A learning based framework for error compensation in 3d printing. IEEE Transactions on Cybernetics 2019; 49: 4042–4050. https://doi. org/10.1109/TCYB.2019. 2898553.
  • 115. He Y., Fei F., Wang W., Song X., Sun Z. Stephen baek predicting manufactured shapes of a projection micro-stereolithography process via convolutional encoder-decoder networks. In: 38th Computers and Information in Engineering Conference of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2018: v01BT02A033. https://doi.org/10.1115/DETC2018-85458.
  • 116. Ryan K.R., Down M.P., Banks C.E. Future of ad- ditive manufacturing: Overview of 4D and 3D printed smart and advanced materials and their applications. Chem. Eng. J. 2021; 403: 126162.
  • 117. Khare V., Sonkaria S., Lee G.-Y., Ahn S.-H., Chu W.-S. From 3D to 4D printing–design, material, and fabrication for multi-functional multi-materials. Int. J. Precis. Eng. Manuf. Technol. 2017; 4: 291–299.
  • 118. Gladman A., Matsumoto E., Nuzzo R., Mahadevan L., Lewis J. Biomimetic 4D printing. Nat. Mater. 2016; 15: 413–418.
  • 119. Mauricio A., Sarabia-Vallejos Fernando E., Rodríguez-Umanzor, González-Henríquez C., and Rodríguez-Hernández J. Innovation in additive manufacturing using polymers: A survey on the technological and material developments. Polymers 2022; 14(7): 1351. https://doi.org/10.3390/ polym14071351
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c4ae536-83db-4145-b4d4-68639144bfef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.