PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wear resistance of hard anodic coatings fabricated on 5005 and 6061 aluminum alloys

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The wear resistance of hard anodic coatings fabricated on 5005 and 6061 aluminum alloys was determined. The Taber abrasion test, ball-on-disc tribological test, and scratch test at constant load were conducted. The wear resistance of the hard coating fabricated on the 6061 alloy was found to be higher compared to the coating on the 5005 alloy. This is related to the lower nanoscale porosity of the former, and the higher hardness of the 6061 alloy compared to 5005. The specific wear rates for the load of 4.905 N were equal to 1.70 × 10−5 and 1.02 × 10−5 mm3 N−1 m−1 for the coatings on 5005 alloy and 6061 alloy, respectively. In the case of the hard anodized 5005 alloy, the specific wear rate increased with increasing load to 4.56 × 10−5 mm3 N−1 m−1 whereas for anodized 6061 alloy to 1.98 × 10−5 mm3 N−1 m−1. It was also found that the protective properties of the coating on 6061 alloy do not change significantly across the coating thickness.
Rocznik
Strony
art. no. e51, 2024
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
  • Department of Materials Science, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Rzeszow, Poland
  • Department of Materials Science, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Rzeszow, Poland
  • Department of Materials Science, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Rzeszow, Poland
  • Department of Materials Science, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Rzeszow, Poland
  • Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Krakow, Poland
  • Department of Materials Science, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Rzeszow, Poland
  • Department of Materials Science, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Rzeszow, Poland
  • Department of Materials Science, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Rzeszow, Poland
  • Faculty of Non‑Ferrous Metals, AGH University of Krakow, Krakow, Poland
  • Department of Materials Science, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Rzeszow, Poland
Bibliografia
  • 1. Starke EA, Staley JT. Application of modern aluminium alloys to aircraft. Prog Aerosp Sci. 2010;32:131-72. https://doi.org/10.1533/9780857090256.3.747.
  • 2. Miller WS, Zhuang L, Bottema J, Wittebrood AJ, De Smet P, Haszler A, Vieregge A. Recent development in aluminium alloys for the automotive industry. Mater Sci Eng A. 2000;280:37-49. https://doi.org/10.1016/S0921-5093(99)00653-X.
  • 3. Suzuki Y. Surface modifications of pistons and cylinder liners. J Mater Eng. 1988;10:61-7. https://doi.org/10.1007/BF02834115.
  • 4. Sheasby PG, Pinner R, Wernick S. The surface treatment and finishing of aluminium and its alloys. Trowbridge: ASM International; 2001.
  • 5. Martinez-Viademonte MP, Abrahami ST, Hack T, Burchardt M, Terryn H. A review on anodizing of aerospace aluminum alloys for corrosion protection. Coatings. 2020;10:1-30. https://doi.org/10.3390/coatings10111106.
  • 6. Korzekwa J. Modification of the structure and properties of oxide layers on aluminium alloys: a review. Rev Adv Mater Sci. 2023;62:1-26. https://doi.org/10.1515/rams-2023-0108.
  • 7. Gabe DR. Hard anodizing-what do we mean by hard ? Met Finish. 2002;100:52-8.
  • 8. Runge JM. The metallurgy of anodizing aluminum. Cham: Springer; 2018.
  • 9. Kwolek P, Drapała D, Krupa K, Obłoj A, Tokarski T, Sieniawski J. Mechanical properties of a pulsed anodised 5005 aluminium alloy. Surf Coat Technol. 2020. https://doi.org/10.1016/j.surfcoat.2019.125233.
  • 10. Wheeler JM, Curran JA, Shrestha S. Microstructure and multiscale mechanical behavior of hard anodized and plasma electrolytic oxidation (PEO) coatings on aluminum alloy 5052. Surf Coatings Technol. 2012;207:480-8. https://doi.org/10.1016/j.surfcoat.2012.07.056.
  • 11. Guezmil M, Bensalah W, Khalladi A, Elleuch K, De-Petris Wery M, Ayedi HF. Effect of test parameters on the friction behaviour of anodized aluminium alloy. Int Sch Res Not. 2014;2014:1-9. https://doi.org/10.1155/2014/795745.
  • 12. Kwolek P, Krupa K, Obłoj A, Kocurek P, Wierzbińska M, Sieniawski J. Tribological properties of the oxide coatings produced onto 6061-T6 aluminum alloy in the hard anodizing process. J Mater Eng Perform. 2018;27:3268-75. https://doi.org/10.1007/s11665- 018-3421-8.
  • 13. Krishna LR, Purnima AS, Sundararajan G. A comparative study of tribological behavior of microarc oxidation and hard-anodized coatings. Wear. 2006;261:1095-101. https://doi.org/10.1016/j.wear.2006.02.002.
  • 14. Sola R, Tonelli L, Shashkov P, Bogdanoff TH, Martini C. Anodizing of AA6082-T5 by conventional and innovative treatments: microstructural characterization and dry sliding behaviour. Wear. 2020;458-459:203423. https://doi.org/10.1016/j.wear.2020.203423.
  • 15. Mohitfar SH, Mahdavi S, Etminanfar M, Khalil-Allafi J. Characteristics and tribological behavior of the hard anodized 6061-T6 Al alloy. J Alloys Compd. 2020;842:1-12. https://doi.org/10.1016/j.jallcom.2020.155988.
  • 16. Soffritti C, Fortini A, Nastruzzi A, Sola R, Merlin M, Garagnani GL. Dry sliding behavior of an aluminum alloy after innovative hard anodizing treatments. Materials. 2021;14:1-19. https://doi.org/10.3390/ma14123281.
  • 17. Malayoglu U, Tekin KC, Malayoglu U, Shrestha S. An investigation into the mechanical and tribological properties of plasma electrolytic oxidation and hard-anodized coatings on 6082 aluminum alloy. Mater Sci Eng A. 2011;528:745160. https://doi.org/10.1016/j.msea.2011.06.032.
  • 18. Sieber M, Scharf I, Herold F, Schmidt A, Bottger D, Bottger S, Bottger E, Gotze U, Lampke T. Anodic oxidation of AlMgSi1 - coatings’ mechanical properties, process costs and energy consumption of the oxide formation. Mater Des. 2016;89:1259-69. https://doi.org/10.1016/j.matdes.2015.10.064.
  • 19. Huang H, Qiu J, Wei X, Sakai E, Jiang G, Wu H, Komiyama T. Ultra-fast fabrication of porous alumina film with excellent wear and corrosion resistance via hard anodizing in etidronic acid. Surf Coatings Technol. 2020;393:125767. https://doi.org/10.1016/j.surfcoat.2020.125767.
  • 20. Santecchia E, Cabibbo M, Hamouda AMS, Musharavati F, Popelka A, Spigarelli S. Dry sliding tribological properties of a hard anodized AA6082 aluminum alloy. Metals (Basel). 2020;10:207-22.
  • 21. ASTM B137-95 (2014). Standard test method for measurement of coating mass per unit area on anodically coated Aluminum; 2009.
  • 22. Nowak WJ. Characterization of oxidized Ni-based superalloys by GD-OES. J Anal At Spectrom. 2017;32:1730-8. https://doi.org/10.1039/C7JA00069C.
  • 23. Gaiaschi S, Richard S, Chapon P, Acher O. Real-time depth measurement in glow discharge optical emission spectrometry: via differential interferometric profiling. J Anal At Spectrom. 2017;32:1-7. https://doi.org/10.1039/c7ja00146k.
  • 24. ASTM D4060-09. Standard test method for abrasion resistance of organic coatings by the Taber Abraser; 2009.
  • 25. ASTM G99-95a. Standard test method for wear testing with a pin-on-disk apparatus; 2000.
  • 26. Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Rese. 1992;7:1564-83.
  • 27. Mondolfo LF. Aluminum alloys: structure and properties. London: Butterworths & Co.; 1976.
  • 28. Zhang F, Nilsson J-O, Pan J. In situ and operando AFM and EIS studies of anodization of Al 6060: influence of intermetallic particles. J Electrochem Soc. 2016;163:C609-18. https://doi.org/10.1149/2.0061610jes.
  • 29. Fratila-Apachitei LE, Terryn H, Skeldon P, Thompson GE, Duszczyk J, Katgerman L. Influence of substrate microstructure on the growth of anodic oxide layers. Electrochim Acta. 2004;49:1127-40. https://doi.org/10.1016/j.electacta.2003.10.024.
  • 30. Zhu B, Zanella C. Influence of Fe-rich intermetallics and their segregation on anodising properties of Al-Si-Mg rheocast alloys. Surf Coat Technol. 2021;422:127570. https://doi.org/10.1016/j.surfcoat.2021.127570.
  • 31. Jariyaboon M, Moller P, Dunin-Borkowski RE, Ambat R. FIBSEM investigation of trapped intermetallic particles in anodic oxide films on AA1050 aluminium. Anti Corros Methods Mater. 2011;58:173-8. https://doi.org/10.1108/00035591111148885.
  • 32. Edwards GA, Stiller K, Dunlop GL, Couper MJ. The precipitation sequence in Al-Mg-Si alloys. Acta Mater. 1998;46:3893-904. https://doi.org/10.1016/S1359-6454(98)00059-7.
  • 33. Mrowka-Nowotnik G, Sieniawski J. Influence of heat treatment on the microstructure and mechanical properties of 6005 and 6082 aluminium alloys. J Mater Process Technol. 2005;162-163:367-72. https://doi.org/10.1016/j.jmatprotec.2005.02.115.
  • 34. van Put MA, Abrahami ST, Elisseeva O, de Kok JMM, Mol JMC, Terryn H. Potentiodynamic anodizing of aluminum alloys in Cr VI-free electrolytes. Surf Interface Anal. 2016;48:946-52.
  • 35. Aerts T, Dimogerontakis T, De GI, Fransaer J, Terryn H. Influence of the anodizing temperature on the porosity and the mechanical properties of the porous anodic oxide film. Surf Coat Technol. 2007;201:7310-7. https://doi.org/10.1016/j.surfcoat.2007.01.044.
  • 36. MIL-A-8625F. Anodic coatings for aluminum and aluminum alloys; 1993.
  • 37. Bull SJ. Failure modes in scratch adhesion testing. Surf Coat Technol. 1991;50:25-32. https://doi.org/10.1016/0257-8972(91)90188-3.
  • 38. Williams JA. Analytical models of scratch hardness. Tribol Int. 1996;29:675-94. https://doi.org/10.1016/0301-679X(96)00014-X.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-098bc789-90e7-4259-9c51-fe1e86ec53f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.