PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elektrody modyfikowane warstwami kompozytowymi na bazie poli(3,4-etylenodioksytiofenu) (PEDOT) i polianiliny (PANI) do zastosowań w bioelektroanalizie

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Electrodes modified with composite layers of poly(3,4-ethylenedioxythiophene) (PEDOT) and polyaniline (PANI) for applications in bioelectroanalysis
Konferencja
56 Zjazd Naukowy Polskiego Towarzystwa Chemicznego i Stowarzyszenia Inżynierów i Techników Przemysłu Chemicznego, 16-20 września, 2013, Siedlce
Języki publikacji
PL EN
Abstrakty
PL
Artykuł stanowi przegląd i charakterystykę kompozytowych materiałów elektrodowych zbudowanych na bazie polianiliny i PEDOT. Przedstawiono własności opisywanych polimerów przewodzących, oraz różne rodzaje materiałów kompozytowych otrzymywanych z ich użyciem. Opisano możliwości stosowania takich materiałów do modyfikowania elektrod stosowanych w bioelektroanalizie jako sensory chemiczne. Przedstawiono również zastosowanie warstw kompozytowych do unieruchamiania enzymów i tworzenia biosensorów. Omówiono trzy podstawowe rodzaje biosensorów z unieruchomioną oksydazą glukozową. Przedstawiono też możliwości stosowania warstw polimerów i kompozytów do budowy elektrod mikostrukturalnych do zastosowań w bioelektroanalizie.
EN
This paper provides an overview and characterization of composite electrode materials built on the basis of polyaniline and PEDOT. Properties of described conducting polymers and various types of composite materials obtained from them have been presented. Also the applicability of these materials to modify electrodes used in bioelectroanalysis as chemical sensors Has been described as well as the composite layers for enzymes immmobilization and biosensors production. Three basic types of biosensors with immobilized glucose oxidase have been discussed. Moreover the possibility to employ polymers and composites layers to construct microstructural electrodes for bioelectroanalysis have been described.
Czasopismo
Rocznik
Strony
801--810
Opis fizyczny
Bibliogr. 62 poz., rys.
Twórcy
  • Katedra Chemii Nieorganicznej i Analitycznej, Uniwersytet Łódzki
autor
  • Katedra Chemii Nieorganicznej i Analitycznej, Uniwersytet Łódzki
Bibliografia
  • 1. Diaz A.; Logan J. „Electroactive polyaniline films". Journal of Electroanaly-tical Chemistry 1980, 111:11 I. doi: 10.1016/S0022-0728(80)80081 -7.
  • 2. Shirakawa H.; Louis E.J.; MacDiarmid A.G.; Chiang C.K.; Heeger A.J. “Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH) x". Journal of the Chemical Society, Chemical Communications 1977, 16, 578.
  • 3. Inzelt G. „Conducting Polymers", Springer-Verlag Berlin Heidelberg, 2008.
  • 4. Skotheim T.A., "Handbook of conducting polymers" Marcel Dekker, New York, 2008.
  • 5. Chiang J.C., MacDiarmid A.G., “’Polyaniline’: Protonic acid doping of the emeraldine form to the metallic regime", Synthetic Metals, 1986, 13, 193-205.
  • 6. Huang W.S., Humphrey B.D., McDairmid A.G., “J. Chem. Soc., Faraday Trans.", 1986, 1,82, 2385.
  • 7. “Synthesis and properties of electrochromic polymers from toluidines”, j. Electroanal. Chem., 1988, 251, 21-29.
  • 8. Barbero C., Zerbino J., Sereno L., Posadas D., "Electrochimica Acta", Vol. 32, 1987,4, 693-697.
  • 9. Yue J., Epstein A.J., Mac Diarmid A.G., Mol. Cryst. Liq. Cryst, 1990, 189, 255.
  • 10. Yue J., Epstein A.J., J. Am. Chem. 1990, Soc. 112, 2800.
  • 11. Yue J., Wang Z. H., Cormack K.R., Epstein A.J., Mac Diarmid A.G., J. A,m. Chem. 1991, Soc. 113, 2665.
  • 12. Karyakin A.A., Strakhowa A.K., Yatsimirsky A.K., “Self-doped polianili-nes electrochemically active in neutral and basic aqueous solutions. Electropolymerisation of substituted anilines" , J. Electroanal. Chem., 1994, 371,259-265.
  • 13. Zhang G.R., Zhao S.F., Liu X., Liu X.L., Lou Y.L., Lu J.X., "Study on Electrocopolymerization of o-Toluidine and Anthranilic Acid with in situ UV-vis Spectroscopy.", Acta Chim. Sinica, 2010, V68(11), 1063-1060.
  • 14. Cakmak G., Küҫükyavuz Z., Küҫükyavuz S., “Conductive copolymers of polyaniline, polypyrrole and poly(dimethylsiloxane)", Synthetic Metals, 2005, 151 (I), 10-18.
  • 15. Morita M., Myazaki S., Tanoue H., Ishikawa M., Matsuda Y., „Electrochemical behawior of polyaniline-polyfstyrene sulfonate) composite film in organic electrolyte solutions." J. Electrochem. Soc., 1994, 114, 6, 1409-1413.
  • 16. Bartlett P.N., Simon E., „Poly(aniline)-poly(acrylate) composite films as modified electrodes fot the oxidation of NADH", Phys. Chem. Chem. Phys., 2000, 2, 2599-2606.
  • 17. Groenendaal L.B., Jonas F., Freitag D., Pielartzik H., Reynolds J.R., “Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future", Adv. Mater., 2000, 12, No. 7, 481-494.
  • 18. Łapkowski M.:” Wiadomości chemiczne", 1993, 47, 299.
  • 19. Wei D., Ivaska A., “Electrochemical Biosensors Based on Polyaniline", Chem. Anal., Warszawa, 2006, 51, 839.
  • 20. Bayer A.G., Eur. Patent, 1988, 339-340.
  • 21. Jonas F., Schrader L., Synth.Met. 1991, 831, 41 -43.
  • 22. Heywang G., Jonas F., Adv. Mater. 1992, 4, 116.
  • 23. Winter I., Reece C., Hormes J., Heywang G., Jonas F., Chem. Phys., 1995, 194,207.
  • 24. Krosa A., Sommerdijkc N.A.J.M., Nolteb R.J.M., “ Poly (pyrrole) versus poly(3,4-ethylenedioxythiophene): implications for biosensor applications.", Sensors and Actuators B, 2005, 106, 289-295.
  • 25. Ates M., Sarac A.S., “Conducting polymer coated carbon surfaces and biosensor applicationsProgress In Organic Coatings, 2009, 66,337-358.
  • 26. Nambiar S., Yeow J.T.W., “Conductive polymer-based sensors for biomedical applications”, Biosensors and Bioelectronics, 2011, 26, 1825-1832.
  • 27. Balamurugan A., Chen S.M., “Poly(3,4-ethylenedioxythiophene-co-(5-a-mino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode for selective detection of dopamine in the presence of ascorbic acid and uric acid.”, Analytica Chimica Acta, 2007, 596, 92-98.
  • 28. Malinauskas A., Garjonyte R., Mažeikiene R., Jureviciute I., “Electrochemical response of ascorbic acid at conducting and electrogenerated polymer modified electrodes for electroanalytical applications: a review”, Talanta, 2004, 64, 121-129.
  • 29. Sanchis C., Ghanem M.A., Salavagione H.J., Morallón E., Bartlett P.N., "The oxidation of ascorbate at copolymeric sulfonated poly(aniline) coated on glassy carbon electrodes.", Bjoelectrochemistry, 201 I, 80, 105-1 13.
  • 30. Barilfett RN., Wallace E.N.K. “The oxidation of ascorbate at poly(aniline)-poly(vinylsulfonate) composite coated electrodes.", Phys. Chem. Chem. Phys.,2001,3, 1491-1496.
  • 31. Zhang L., “Electrochemical synthesis of self-doped polyaniline and its use to the electrooxidation of ascorbic acid.”, J Solid State Electrochem., 2007, 11,365-371.
  • 32. Sekli-Belaidi F., Temple-Boyer R, Gros R, “Voltammetric microsensor using PEDOT-modified gold electrode for the simultaneous assay of ascorbic and uric acids.", J. Electroanal. Chem., 2010, 647, 159-168.
  • 33. Thiagarajan S., Rajkumar M., Chen S.M., “Nano Ti02 -PEDOT Film for the Simultaneous Detection of Ascorbic Acid and Diclofenac.", Int. J. Electrochem. Sci., 2012, 7,2109-2122.
  • 34. Jeyalakshmi S.R., Kumar S.S., Mathiyarasu J., Phani K.L.N., Yegnaraman V., “Simultaneous determination of ascorbic acid, dopamine and uric acid using PEDOT polymer modified electrodes.", Indian Journal of Chemistry, 2007, 46A, 957-961.
  • 35. Vasantha V.S., Chen S.M., “Electrocatalysis and simultaneous detection of dopamine and ascorbic acid using poly(3,4-ethylenedioxy)thiophene film modified electrodes.”. J. Electroanal. Chem., 2006, 592, 77-87.
  • 36. Senthil Kumar S., Mathiyarasu J., Phani K.L.N., Yegnaraman V., “Simultaneous determination of dopamine and ascorbic acid on poly(3,4-ethyle-nedioxythiophene) modified glassy carbon electrode.”, J Solid State Electrochem., 2006, 10,905-913.
  • 37. Atta N.F., Galal A., Ahmed R.A., “Poly(3,4-ethylene-dioxythiophene) electrode for the selective determination of dopamine in presence of sodium dodecyl sulfate.”, Bioelectrochemistry, 2011, 80, 132-141.
  • 38. El-Enany G.M., Ghanem M.A., Abd El-Ghaffar M.A., "Electrochemical Deposition and Characterization of Poly (3,4-ethylene dioxythiophene), Poly(aniline) and their Copolymer onto Glassy Carbon Electrodes for Potential Use in Ascorbic Acid Oxidation.”, Portugaliae Electrochimica Acta, 2010, 28, 5, 336-348.
  • 39. Lupua S., Leteb C., Marinb M., Totir N., Balaurec RC., “Electrochemical sensors based on platinum electrodes modified with hybrid inorganic-organic coatings for determination of 4-nitrophenol and dopamine.", Electrochimica Acta, 2009, 54,1932-1938.
  • 40. Lupu S., Balaure RC., Lete C., Marin M., Totir N., “Voltammetric Determination Of Dopamine At Pedot-Prussian Blue Composite Modified Electrodes.”, Revue Roumaine De Chimie, 2008, 53, 10, 931-939.
  • 41. Mathiyarasu J., Senthilkumar S., Phani K.L.N., Yegnaraman V., “PE-DOT-Au Nanocomposite Films for Electrochemical Sensing of Dopamine and Uric Acid.", Journal of Nanoscience and Nanotechnology, 2007, 7, 2206-2210.
  • 42. Harish S., Mathiyarasu J., Phani K.L.N., Yegnaraman V., “PEDOT/Pal-ladium composite material: synthesis, characterization and application to simultaneous determination of dopamine and uric acid.", J Appl Electrochem, 2008, 38, 1583-1588.
  • 43. Stoyanova A., Tsakova V., “Copper-modified poly(3,4-ethylenedioxythio-phene) layers for selective determination of dopamine in the presence of ascorbic acid: I. Role of the polymer layer thickness.", J Solid State Electrochem., 2010, 14,1947-1955.
  • 44. Stoyanova A., Tsakova V., “Copper-modified poly(3,4-ethylenedioxythio-phene) layers for selective determination of dopamine in the presence of ascorbic acid: II Role of the characteristics of the metal deposit.", J Solid State Electrochem., 2010, 14, 1957-1965.
  • 45. Balamurugan A., Chen S.M., >‘Poly(3,4-ethylenedioxythiophene-co-(5-a-mino-2-r\gphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode for selective detection of dopamine in the presence of ascorbic acid and uric acid.", Analytica Chimica Acta, 2007, 596, 92-98.
  • 46. Lin K.C., Yin C.Y., Chen S.M., “Simultaneous Determination of AA, DA, And UA Based on Bipolymers by Electropolymerization of Luminol And 3,4-Ethylenedioxythiophene Monomers." , Int. J. Electrochem. Sci., 2011, 6,3951-3965.
  • 47. Janata J., “Principles of Chemical Sensors” second edition, Springer, 2009
  • 48. Gründler R “Chemical Sensors An Introduction for Scientists and Engineers", Springer-Verlag, 2007
  • 49. Karyakin A.A., Vuki M., Lukachova L.V., Karyakina E.E., Orlov A.V., Karpacheva G.R, Wang J., Anal. Chem., 1999, 71, 2534.
  • 50. Pandey RC., Singh G., Talanta, 2001, 55, 773
  • 51. Toghill K.E., Compton R.G. “Electrochemical Non-enzymatic Glucose Sensors: A Perspective and an Evaluation.", J. Electrochem. Sci., 2010, 5, 1246-1301
  • 52. Kros A., von Hovell S.W.F.M., Sommerdijk N.A.J.M., Nolte R.J.M., „Poly (3,4-ethylenedioxythiophene - based glucose biosensors”, Adv. Mater., 2001, 13, No 20, 1555-1557.
  • 53. Li Z.F., Kang E.T., Neon K.G., Tan K.L., “Covalent immobilization of glucose oxidase on the surface of polianiline films graft copolymerized with acrylic acid.", Biomaterials, 1998, 19,45-53.
  • 54. Raitman O.A., Katz E., Bückmann A.F., Willner I.,” Integration of Polyaniline/Poly (acrylic acid) Films and Redox Enzymes on Electrode Supports: An in Situ Electrochemical/Surface Plasmon Resonance Study of the Bioelectrocatalyzed Oxidation of Glucose or Lactate in the Integrated Bioelectrocata-lytic Systems.", J. Am. Chem. Soc., 2002, 124, 22, 6487-6496.
  • 55. Bartlett P., Birkin P.R.,” Enzyme switch responsive to glucose", Anal. Chem., 1993,65, II18-1119,
  • 56. Bartlett P., Astier Y., „Microelectrochemical enzyme transistors", Chem. Commun., 2000, 105-112.
  • 57. Shim N.Y., Bernards D.A., Macaya D.J., DeFranco J.A., Nikolou M., Owens R.M., Malliara G.G., “All-Plastic Electrochemical Transistor for Glucose Sensing Using a Ferrocene Mediator.", Sensors, 2009, 9, 9896-9902.
  • 58. Park J., Kim H.K., Son Y., „Glucose biosensor constructed from capped conducting microtubules.", Sensors and Actuators, B, 2008, 133, 244-250.
  • 59. Koopal C.G.J., Nolte R.J.M., „Kinetic study of the performance of third-generation biosensore.”, Bioelectrochem. Bioenerg., 1994, 33, 45-53.
  • 60. Koopal C.G.J., Feiters M.C., Nolte R.J.M., de Ruiter B., Schasfoort R.B.M., „Glucose sensor utilizing polypyrrole incorporated in track-etch membranes as the mediator.", Bioelectrochem. Bioenerg., 1992, 7, 461-471.
  • 61. Koopal, Feiters M.C., Nolte R.J.M., de Ruiter B., Schasfoort R.B.M., „Third-generation amperometric biosensor for glucose. Polypyrrole deposited within a matrix of uniform latex particles as mediator.”, Bioelectrochem. Bioenerg., 1992, 29, 159-175.
  • 62. Yu C., Zhai J., Gao X., Wan M., Jiang L., Li T., Li Z., „Water-assisted fabrication of polyaniline Honeycomb structure Film.”, J. Phys. Chem. B, 2004, 108,4586-4589.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08769e5d-92ae-4f17-8e35-01094ddd55f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.