PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Investigation of electromagnetic punching process with adjustable collision velocity for ultra‑thin titanium sheet

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electromagnetic punching (EMP) is a new type of high-speed punching technology. In the existing EMP method, the blank has no initial loading velocity, so the punching force can only be increased by boosting the discharge energy, which greatly reduces the energy utilization and limits its application in high-strength thin sheet punching. To this end, this paper proposes and validates an EMP method with adjustable initial collision velocity based on the inner-field uniform pressure actuator (UPA) for manufacturing punched parts of TA1 pure titanium foil sheet. The results show that with the increase of collision velocity, the punchable aperture range expands, the dimensional accuracy and section quality of punched parts are significantly improved, and a punchable window is established. In addition, based on the dynamic material constitutive and fracture model, the electromagnetic-structural field simulation model of EMP is established. The analysis shows that the formation of the fracture section is the result of the combined effect of tensile stress and shear stress, and the increase of the collision velocity improves the section quality. Finally, a 100 μm thick titanium sheet with a hole diameter of 2–16 mm and a maximum dimension accuracy of less than 10 μm was successfully punched.
Rocznik
Strony
art. e263, 1--17
Opis fizyczny
Bibliogr. 19 poz., il., tab., wykr.
Twórcy
autor
  • Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China
  • State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, China
autor
  • Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China
  • State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, China
autor
  • Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China
autor
  • Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China
  • State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, China
autor
  • Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China
  • State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, China
autor
  • Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China
  • State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, China
Bibliografia
  • 1. Modanloo V, Talebi-Ghadikolaee H, Alimirzaloo V, Elyasi M. Fracture prediction in the stamping of titanium bipolar plate for PEM fuel cells. Int J Hydrog Energy. 2021;46:5729-39.
  • 2. Xu J, Guo B, Wang CJ, Shan DB. Blanking clearance and grain size effects on micro deformation behavior and fracture in microblanking of brass foil. Int J Mach Tools Manuf. 2012;60:27-34.
  • 3. Vollertsen F, Biermann D, Hansen H, Jawahir I, Kuzman K. Size effects in manufacturing of metallic components. CIRP Ann Manuf Technol. 2009;58:566-87.
  • 4. Fu MW, Chan WL. A review on the state-of-the-art microforming technologies. Int J Adv Manuf Technol. 2013;67:2411-37.
  • 5. Psyk V, Risch D, Kinsey B, Tekkaya A, Kleiner M. Electromagnetic forming – a review. J Mater Process Technol. 2011;211:787-829.
  • 6. Zhao QJ, Jie X, Wang CJ, Shan DB, Guo B. Electromagnetic micro-punching process of T2 Copper Foil. Adv Mat Res. 2015;1120-1121:1220-5.
  • 7. Huang WP, Cheng L, Lv F, Deng JH. Deformation analysis of aluminum alloy sheet in electromagnetic punching. J Plast Eng. 2016;23:62-8 (In Chinese).
  • 8. Ahmed M, Panthi SK, Ramakrishnan N, Jha AK, Yegneswaran AH, Dasgupta R, Ahmed S. Alternative flat coil design for electromagnetic forming using FEM. T Nonferr Metal Soc. 2011;21:618-25.
  • 9. Zhang X, Wang ZR, Song FM, Yu LZ, Lu X. Finite element simulation of the electromagnetic piercing of sheet metal. J Mater Process Technol. 2004;151:350-4.
  • 10. Deng JH, Wang W, Jiang XY, Zhan YR. Experimental investigation on electromagnetic assisted micro-piecing of brass foil. J Plast Eng. 2014;21:58-62 (In Chinese).
  • 11. Cui JJ, Liao H, Duan LM, Jiang H, Li GY. Experimental investigation on electromagnetic punching process of hybrid CFRP/Al stacks under different discharge energies. Thin-Walled Struct. 2020;153: 106789.
  • 12. Duan LM, Jiang H, Zhang X, Li GY, Cui JJ. Experimental investigations of electromagnetic punching process in CFRP laminate. Mater Manuf Process. 2020;36:223-34.
  • 13. Cui XH, Qiu DY, Jiang LN, Yu HP, Du ZH, Xiao A. Electromagnetic sheet forming by uniform pressure using flat spiral coil. Materials. 2019;12:1963.
  • 14. Guo K, Lei XP, Zhan M, Tan JQ. Electromagnetic incremental forming of integral panel under different discharge conditions. J Manuf Process. 2017;28:373-82.
  • 15. Dong PX, Li ZZ, Feng S, Wu ZL, Cao QL, Li L, Chen Q, Han XT. Fabrication of titanium bipolar plates for proton exchange membrane fuel cells by uniform pressure electromagnetic forming. Int J Hydrog Energy. 2021;46:38768-81.
  • 16. Wu ZL, Cao QL, Fu JY, Li ZZ, Wan Y, Chen Q, Li L, Han XT. An inner-field uniform pressure actuator with high performance and its application to titanium bipolar plate forming. Int J Mach Tools Manuf. 2020;155: 103570.
  • 17. Huh H, Kang W, Han S. A tension split Hopkinson bar for investigating the dynamic behavior of sheet metal. Exp Mech. 2002;42:8-17.
  • 18. Johnson G, Cook W. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engine Frac Mech. 1985;21:31-48.
  • 19. Bao Y, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci. 2004;46:81-98.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0816aa43-7e6b-45e9-b017-d454e90dc4fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.