PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on diatomite from Polish deposits and the possibilities of its use

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Diatomite from a deposit in Jawornik Ruski (Poland) has been selected as the material for study. The paper aimeds to show the possibility of using diatomite from the Carpathian Foothills as a sorbent of petroleum substances. Design/methodology/approach: Diatomite in the delivery condition (DC) and diatomite after calcination were used for this study. The material was calcined at 600, 650, 750, 850 and 1000°C. The diatomaceous earth was then granulated. The morphology of diatomite was observed using SEM. Particle size distribution was determined by Laser Particle Analyzer, chemical composition was determined by XRF, and mineralogical composition by XRD. Specific surface area, pore volume and pore size were determined. Thermal analysis (TG, DTA) was carried out. Absorption capacity tests were performed and the effect of diatomite addition on water absorption of concrete samples was determined. Findings: Within the framework of the study, it was shown that diatomite from the Jawornik deposit could be successfully used as a sorbent for petroleum substances. The absorption capacity of calcined at 1000°C diatomaceous earth was 77%. The obtained result exceeds the effectiveness of previously used absorbents, for which the sorption level is 60-70%. This allows commercial use of diatomite from deposits in Poland. In addition, water absorption tests have shown that diatomaceous earth can successfully replace cement used in concrete productione. The most favourablee effect on the reduction of water absorption is the addition of diatomite in the amount of 10%. Practical implications: The properties of diatomaceous earth from the Jawornik Ruski deposit indicate its high potential for use in the synthesis of geopolymers, which is important not only from an economic but also from an ecological point of view. Originality/value: The novelty of this work is the demonstration of the possibility of using diatomite as a sorbent of petroleum substances with high efficiency, exceeding the previously used sorbents.
Rocznik
Strony
5--15
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
autor
  • Chair of Material Engineering and Physics, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland
autor
  • Chair of Material Engineering and Physics, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland
  • Chair of Material Engineering and Physics, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland
autor
  • Chair of Material Engineering and Physics, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland
autor
  • Chair of Material Engineering and Physics, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland
Bibliografia
  • [1] I. Ilia, M. Stamatakis, T. Perraki, Mineralogy and technical properties of clayey diatomites from north and central Greece, Open Geosciences 1/4 (2009) 393-403. DOI: https://doi.org/10.2478/v10085-009-0034-3
  • [2] A.A. Sharipova, S.B. Aidarova, N.Y. Bekturganova, A. Tleuova, M. Kerimkulova, O. Yessimova, T. Kairaliyeva, O. Lygina, S. Lyubchik, R. Miller, Triclosan adsorption from model system by mineral sorbent diatomite, Colloids Surfaces A 532 (2017) 97-101. DOI: https://doi.org/10.1016/j.colsurfa.2017.06.012
  • [3] E. Gulturk, M. Guden, Thermal and acid treatment of diatom frustules, Journal of Achievements in Materials and Manufacturing Engineering 46/2 (2011) 196-203.
  • [4] M. Pavlíková, P. Rovnaníková, M. Záleská, Z. Pavlík, Diatomaceous Earth-Lightweight Pozzolanic Admixtures for Repair Mortars—Complex Chemical and Physical Assessment, Materials 15/19 (2022) 6881. DOI: https://doi.org/10.3390/ma15196881
  • [5] M.T. Phong, T.D.M. Dang, Preparation of filter aids based on Lam Dong diatomite, Vietnam Journal of Science and Technology 50/1 (2017) 63-71. DOI: https://doi.org/10.15625/0866-708X/50/1/9473
  • [6] A. Šaponjić, M. Stanković, J. Majstorović, B. Matović, S. Ilić, A. Egelja, M. Kokunešoski, Porous ceramic monoliths based on diatomite, Ceramics International 41/8 (2015) 9745-9752. DOI: https://doi.org/10.1016/j.ceramint.2015.04.046
  • [7] Z. Lv, A. Jiang, J. Jin, Influence of ultrafine diatomite on cracking behavior of concrete: an acoustic emission analysis, Construction and Building Materials 308 (2021) 124993. DOI: https://doi.org/10.1016/j.conbuildmat.2021.124993
  • [8] M. Lutyński, P. Sakiewicz, S. Lutyńska, Characterization of diatomaceous earth and halloysite resources of Poland, Minerals 9/11 (2019) 670. DOI: https://doi.org/10.3390/min9110670
  • [9] A.A. Reka, B. Pavlovski, E. Fazlija, A. Berisha, M. Pacarizi, M. Daghmehchi, C. Sacalis, G. Jovanovski, P. Makreski, A. Oral, Diatomaceous Earth: Characterization, thermal modification, and application, Open Chemistry 19/1 (2021) 451-461. DOI: https://doi.org/10.1515/chem-2020-0049
  • [10] Y. Gao, Y. Han, W. Li, Flotation behavior of diatomite and albite using dodecylamine as a collector, Minerals 8/9 (2018) 371. DOI: https://doi.org/10.3390/min8090371
  • [11] M. Nazhipkyzy, R.R. Nemkayeva, A. Nurgain, A.R. Seitkazinova, B.K. Dinistanova, A.T. Issanbekova, N. Zhylybayeva, N.S. Bergeneva, G.U. Mamatova, The Use of Diatomite as a Catalyst Carrier for the Synthesis of Carbon Nanotubes, Nanomaterials 12/11 (2022) 1817. DOI: https://doi.org/10.3390/nano12111817
  • [12] Y.H. Zhao, J.T. Geng, J.C. Cai, Y.F. Cai, C.Y. Cao, Adsorption performance of basic fuchsin on alkali-activated diatomite, Adsorption Science and Technology 38/5-6 (2020) 151-167. DOI: https://doi.org/10.1177/0263617420922084
  • [13] M.A.M. Khraisheh, M.S. Alg-Houti, Enhanced Dye Adsorption by Microemulsion-Modified Calcined Diatomite (μE-CD), Adsorption 11 (2005) 547-559. DOI: https://doi.org/10.1007/s10450-005-5612-5
  • [14] Z. Ren, Y. He, R. Zheng, Z. Guo, H. Gao, X. He, F. Wu, X. Ji, The preparation and characterization of calcined diatomite with high adsorption properties by CaO hydrothermal activation, Colloids Surfaces A 636 (2022) 128134. DOI: https://doi.org/10.1016/j.colsurfa.2021.128134
  • [15] X. Li, H. Lin, H. Jiang, Y. Zhang, B. Liu, Y. Sun, C. Zhao, Preparation and properties of a new bio-based epoxy resin/diatomite composite, Polymer Degradation and Stability 187 (2021) 109541. DOI: https://doi.org/10.1016/j.polymdegradstab.2021.109541
  • [16] D. Taoukil, Y. El meski, M. lhassane Lahlaouti, R. Djedjig, A. El bouardi, Effect of the use of diatomite as partial replacement of sand on thermal and mechanical properties of mortars, Journal of Building Engineering 42 (2021) 103038. DOI: https://doi.org/10.1016/j.jobe.2021.103038
  • [17] X. Li, J.G. Sanjayan, J.L. Wilson, Fabrication and stability of form-stable diatomite/paraffin phase change material composites, Energy and Buildings 76 (2014) 284-294. DOI: https://doi.org/10.1016/j.enbuild.2014.02.082
  • [18] S.D. Mustafov, F. Sen, M.O. Seydibeyoglu, Preparation and characterization of diatomite and hydroxyapatite reinforced porous polyurethane foam biocomposites, Scientific Reports 10 (2020) 13308. DOI: https://doi.org/10.1038/s41598-020-70421-3
  • [19] N. Turkten, A novel low-cost photocatalyst: preparation, characterization, and photocatalytic properties of CeO 2-diatomite composites, Water 14/21 (2022) 3373. DOI: https://doi.org/10.3390/w14213373
  • [20] T. Sinsiri, T. Phoo-ngernkham, V. Sata, P. Chindaprasirt, The effects of replacement fly ash with diatomite in geopolymer mortar, Computers and Concrete 9/6 (2012) 427-437. DOI: https://doi.org/10.12989/cac.2012.9.6.427
  • [21] C. Bagci, G.P. Kutyla, W.M. Kriven, Fully reacted high strength geopolymer made with diatomite as a fumed silica alternative, Ceramics International 43/17 (2017) 14784-14790. DOI: https://doi.org/10.1016/j.ceramint.2017.07.222
  • [22] K. Şahbudak, Mechanical and Thermal Evaluation of Diatomite Doped Fly Ash Based Geopolymers, Materials Science (Medžiagotyra) 28/1 (2022) 75-81. DOI: https://doi.org/10.5755/j02.ms.26796
  • [23] A. Font, L. Soriano, L. Reig, M.M. Tashima, M.V. Borrachero, J. Monzó, J. Payá, Use of residua diatomaceous earth as a silica source in geopolymer production, Materials Letters 223 (2018) 10-13. DOI: https://doi.org/10.1016/j.matlet.2018.04.010
  • [24] Z. Ahmadi, J. Esmaeili, J. Kasaei, R. Hajialioghli, Properties of sustainable cement mortars containing high volume of raw diatomite, Sustainable Materials and Technologies 16 (2018) 47-53. DOI: https://doi.org/10.1016/j.susmat.2018.05.001
  • [25] J. Fang, Y. Wang, K. Wang, W. Dai, Y. Yu, C. Li, Experimental Study on the Mechanical Properties of Diatomite-Modified Coasral Cement Soil, Materials 15/21 (2022) 7857. DOI: https://doi.org/https://doi.org/10.3390/ma15217857
  • [26] Górtech Sp. z o.o., Safety Data Sheet - DIATO: diatomite sorbent, 2018 (in Polish). Available from: https://diato.pl/wp-content/uploads/2017/10/Karta_charakterystyki_sorbent_diatomitowy.pdf
  • [27] T. Węsierski, O. Eszer, Determining the Components of Foaming Agents That Can Have a Decisive Impact On Reducing the Absorption Proprieties of of Rigid Polyurethane Foam Waste in Relation to Post-Foaming Waste, Safety and Fire Technology 50/2 (2018) 50-62. DOI: https://doi.org/10.12845/bitp.50.2.2018.4
  • [28] A. Chaisena, K. Rangsriwatananon, Effects of thermal and acid treatments on some physico-chemical properties of Lampang diatomite, Journal of Science Technology 11 (2004) 289-299.
  • [29] W. Aguilar-Mamani, G. García, J. Hedlund, J. Mouzon, Comparison between leached metakaolin and leached diatomaceous earth as raw materials for the synthesis of ZSM-5, SpringerPlus 3 (2014) 292. DOI: https://doi.org/10.1186/2193-1801-3-292
  • [30] B. Figarska-Warchoł, M. Rembiś, G. Stańczak, The impact of calcination on changes in the physical and mechanical properties of the diatomites of the Leszczawka Member (the Outer Carpathians, Poland), Geology, Geophysics and Environment 45/4 (2019) 269. DOI: https://doi.org/10.7494/geol.2019.45.4.269
  • [31] J. Marczyk, C. Ziejewska, S. Gądek, K. Korniejenko, M. Łach, M. Góra, I. Kurek, N. Dogan-Saglamtimur, M. Hebda, M. Szechyńska-Hebda, Hybrid materials based on fly ash, metakaolin, and cement for 3D printing, Materials 14/22 (2021) 6874. DOI: https://doi.org/10.3390/ma14226874
  • [32] M. Łach, A. Grela, K. Pławecka, M.D. Guigou, J. Mikuła, N. Komar, T. Bajda, K. Korniejenko, Surface Modification of Synthetic Zeolites with Ca and HDTMA Compounds with Determination of Their Phytoavailability and Comparison of CEC and AEC Parameters, Materials 15/12 (2022) 4083. DOI: https://doi.org/10.3390/ma15124083
  • [33] H. Tang, X. Xu, B. Wang, C. Lv, D. Shi, Removal of ammonium from swine waste water using synthesized zeolite from fly ash, Sustain 12/8 (2020) 3423. DOI: https://doi.org/10.3390/SU12083423
  • [34] L. Xiao, B. Pang, Experimental study on the effect of calcination on the volcanic ash activity of diatomite, IOP Conference Series: Materials Science and Engineering 231 (2017) 012089. DOI: https://doi.org/10.1088/1757-899X/231/1/012089
  • [35] S. Bailliez, A. Nzihou, The kinetics of surface area reduction during isothermal sintering of hydroxyapatite adsorbent, Chemical Engineering Journal 98/1-2 (2004) 141-152. DOI: https://doi.org/10.1016/j.cej.2003.07.001
  • [36] C.L. Mangun, M.A. Daley, R.D. Braatz, J. Economy, Effect of pore size on adsorption of hydrocarbons in phenolic-based activated carbon fibers, Carbon 36/1-2 (1998) 123-129. DOI: https://doi.org/10.1016/s0008-6223(97)00169-3
  • [37] I.L. Rogovskii, O.M. Kalivoshko, K. Yu Maksimovich, E. Yu Maksimovich, Research of Mixed Carbon Sorbents for Removal of Oil Products from Water and Soil for Preservation of Environmental Infrastructure, IOP Conference Series: Earth and Environmental Science 720 (2021) 012108. DOI: https://doi.org/10.1088/1755-1315/720/1/012108
  • [38] A. Ergün, Effects of the usage of diatomite and waste marble powder as partial replacement of cement on the mechanical properties of concrete, Construction and Building Materials 25/2 (2011) 806-812. DOI: https://doi.org/10.1016/j.conbuildmat.2010.07.002
  • [39] N. Sharma, M. Singh Thakur, P.L. Goel, P. Sihag, A review: Sustainable compressive strength properties of concrete mix with replacement by marble powder, Journal of Achievments in Materials and Manufacturing Engineering 98/1 (2020) 11-23. DOI: https://doi.org/10.5604/01.3001.0014.0813
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07d84f19-6017-424c-8ca1-7bf7f8e18a46
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.