Identyfikatory
Warianty tytułu
Wykorzystanie produktów odpadowych w postaci pyłu i mączki szklanej w zaprawach
Języki publikacji
Abstrakty
The development of eco-innovation in the construction materials industry plays a key role in promoting sustainable development. Faced with dwindling natural resources, construction material manufacturers are increasingly turning to solutions that reduce their negative impact on the environment while ensuring high product quality. The aim of the study was to assess the possibility of using waste soda-lime-silicate glass as a reactive pozzolanic additive for cement mortars or as a non-reactive filler. The research involved the preparation of a series of mortars with different degrees of cement replacement with glass dust (10%, 20%, 30%) and a series with sand replaced with glass powder (20%, 35%, 50%). The setting time, bulk density, consistency, compressive and flexural strength, water absorption and capillary rise, as well as the microstructure of the mortars, were examined. When glass powder was used as a cement substitute, the decrease in compressive strength ranged from 8.5 to 16%, and the decrease in flexural strength from 6 to 9%. Ground glass in powder form did not exhibit full pozzolanic properties.
Rozwój ekoinnowacji w przemyśle materiałów budowlanych odgrywa kluczową rolę w promowaniu zrównoważonego rozwoju. W obliczu kurczących się zasobów naturalnych producenci materiałów budowlanych coraz częściej sięgają po rozwiązania, które zmniejszają negatywny wpływ na środowisko, zapewniając jednocześnie wysoką jakość produktów. Celem badań była ocena możliwości wykorzystania odpadowego szkła sodowo-wapniowo-krzemianowego jako reaktywnego dodatku pucolanowego do zapraw cementowych lub jako wypełniacza niereaktywnego. Badania obejmowały przygotowanie serii zapraw o różnym stopniu zastąpienia cementu pyłem szklanym (10%, 20%, 30%) oraz serii, w których piasek zastąpiono mączką szklaną (20%, 35%, 50%). Badano czas wiązania, gęstość nasypową, konsystencję, wytrzymałość na ściskanie i zginanie, wodochłonność i kapilarność, a także mikrostrukturę zapraw. W przypadku zastosowania pyłu szklanego jako substytutu cementu spadek wytrzymałości na ściskanie wynosił od 8,5 do 16%, a spadek wytrzymałości na zginanie od 6 do 9%. Mielony pył nie wykazywał pełnych właściwości pucolanowych.
Czasopismo
Rocznik
Tom
Strony
art. no. 1107
Opis fizyczny
Bibliogr. 46 poz., fot., tab., wykr.
Twórcy
autor
- Kielce University of Technology, Tysiąclecia PaństwaPolskigo Avenue 7, 25-314 Kielce, Poland
autor
- Casimir Pulaski Radom University
Bibliografia
- ASTM. (2023). Standard test method for potential alkali reactivity of aggregates (Mortar-bar method) (ASTM C1260).https://www.astm.org/standards/c1260
- Biernacki, J. J., Bullard, J. W., Sant, G., Brown, K., Glasser, F. P., Jones, S., Ley, T., Livingston, R., Nicoleau, L., Olek, J., Sanchez, F., Shahsavari, R., Stutzman, P. E., Sobolev, K., & Prater, T. (2017). Cements in the 21st century: Challenges, perspectives, and opportunities. Journal of the American Ceramic Society, 100(7), 2746-2773. https://doi.org/10.1111/jace.14948
- Błaszczyński, T. Z., & Król, M. R. (2016). Cement industry in pursuit of environmental performance. Konferencja Dni Betonu, Wisła, Polska, 1-13. https://www.dnibetonu.com/wp-content/pdfs/2016/blaszczynski_krol.pdf (in Polish).
- Czapik, P., Kuza, D., & Boroń, M. (2021). Wpływ stosowania szkła odpadowego na właściwości zaprawy. Konferencja Dni Betonu, Wisła, Polska, 197-209. (in Polish).https://www.dnibetonu.com/wp-content/pdfs/2021/Czapik_Kuza_Boron.pdf
- Drzymała, T., Zegardło, B., &Tofilo, P. (2020). Properties of concrete containing recycled glass aggregates produced of exploded lighting materials. Materials, 13(14), 3189. https://doi.org/10.3390/ma13143189
- Du, H., & Tan, K. H. (2017). Properties of high volume glass powder concrete. Cement and Concrete Composites, 75, 22-29. https://doi.org/10.1016/j.cemconcomp.2016.10.010
- Gawlicki, M., Pichór, W., Brylska, E., Brylicki, W., Łagosz, A., Nocuń-Wczelik, W., Petri, M., Pytel, Z., Roszczynialski, W., Stolecki, J., Malata, G., Reben, M., & Małolepszy, J. (2013). Fundamentals of building materials technology and test methods. Kraków: Wydawnictwa AGH. (in Polish).
- Giergiczny, Z., & Szybilski, M. (2014). Revision of EN 197-1 - Three-component general purpose cements with low Portland clinker content. Materiały Budowlane, 507, 3-5. https://www.materialybudowlane.info.pl/images/2014/11/s03-05.pdf (in Polish).
- Gołek, Ł. (2019). Glass powder and high-calcium fly ash based binders – Long term examinations. Journal of Cleaner Production, 220, 493-506. https://doi.org/10.1016/j.jclepro.2019.02.095
- Gołek, M., Szudek, W., Błądek, M., & Cięciwa, M. (2020). Effect of the addition of ground glass cullet on the strength and microstructure of Portland cement slurries and mortars. Cement Wapno Beton, 25(6), 480-494. https://doi.org/10.32047/CWB.2020.25.6.5
- Jasiczak, J., & Mikołajczak, P. (2003). Concrete technology modified with admixtures and additives. Proceedings of Poznan University of Technology. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Technology+of+concrete+modified+with+admixtures+and+additives+J+Jasiczak%2C+P+Miko%C5%82ajczak+-+Proceedings+of+Poznan+University+of+Technology%2C+2003&btnG= (in Polish).
- Jin, C., Meyer, C., & Baxter, S. (2000). Glascrete—Concrete with glass aggregate. ACI Materials Journal, 97(2), 208-213. https://www.researchgate.net/publication/279564643_Glascrete_-_Concrete_with_glass_aggregate
- Jura, J. (2017). Ekologiczne aspekty wykorzystania materiałów odpadowych w sektorze budowlanym. In K. Pawłowski (Ed.), Budownictwo zrównoważone : wybrane aspekty projektowe i wykonawcze (pp. 20-32). Częstochowa: PolitechnikaCzęstochowska. (in Polish).
- Kamali, M., &Ghahremaninezhad, A. (2015). Effect of glass powders on the mechanical and durability properties of cementitious materials. Construction and Building Materials, 98, 407-416. https://doi.org/10.1016/j.conbuildmat.2015.06.010
- Król, A., & Kuterasińska, J. (2015). Properties of new types of ternary cements CEM II/C and CEM VI. Materiały Budowlane, 518, 92-95. https://www.materialybudowlane.info.pl/images/stories/10_2015/92-95.pdf (in Polish).
- Kurdowski, W. (2010). Cement and concrete chemistry. London: Springer.
- Kuryś, D., & Drabczyk, M. (2023). Ślad węglowy materiałów budowlanych i jego wpływ na emisyjność budynków oraz budowli. Budownictwo, Technologie, Architektura, 3, 68-73. https://www.bta-czasopismo.pl/wp-content/uploads/2023/08/68_Slad-weglowy-materialow-budowlanych-i-jego-wplyw-na-emisyjnosc-budynkow-oraz-budowli.pdf (in Polish).
- Kylili, A., & Fokaides, P. (2017). Policy trends for the sustainability assessment of construction materials: A review. Sustainable Cities and Society, 35, 280-288. https://doi.org/10.1016/j.scs.2017.08.013
- Lützkendorf, T. (2020). The role of carbon metrics in supporting built-environment professionals. Buildings and Cities, 1(1), 662-672. https://doi.org/10.5334/bc.73
- Małek, M., Łasica, W., Jackowski, M., & Kadela, M. (2020). Effect of waste glass addition as a replacement for fine aggregate on properties of mortar. Materials, 13(3), 1049. https://doi.org/10.3390/ma13143189
- Mazurowski, R. F. (2007). TELL QaramelExcavations 2005. Polish Archaeology in the Mediterranean, 17, 483-499. https://bazhum.muzhp.pl/media/texts/polish-archaeology-in-the-mediterranean/2007-tom-17/polish_archaeology_in_the_mediterranean-r2007-t17-s483-499.pdf
- Meena, M. K., Gupta, J., & Nagar, B. (2018). Performance of concrete by using glass powder. International Research Journal of Engineering and Technology, 5(9), 840-844.https://www.irjet.net/archives/V5/i9/IRJET-V5I9152.pdf
- Najduchowska M., Pabiś E., Rolka G. and Barana T. (2016). Properties of concrete with glass cullet. Concrete Days, 1, 3-21(in Polish).
- Najduchowska, M., Różycka, K., & Rolska, G. (2014). Assessment of the potential use of glass cullet in the construction industry in terms of its impact on the environment. PraceIciMB, 17, 46-56. https://bibliotekanauki.pl/articles/392370 (in Polish).
- Olofinnade, O. M., Ede, A. N., Ndambuki, J. M., Ngene, B. U., Akinwumi, I., & Ofuyatan, O. (2018). Strength and microstructure of eco-concrete produced using waste glass as partial and complete replacement for sand. Cogent Engineering, 5(1), 1523860. http://dx.doi.org/10.1080/23311916.2018.1483860
- Omran, A. F., Morin, E. D., Harbec, D., & Tagnit-Hamou, A. (2017). Long-term performance of glass-powder concrete in large-scale field applications. Construction and Building Materials, 135, 43-58. https://doi.org/10.1016/j.conbuildmat.2016.12.218
- Park, S., & Lee, P. (2004). Studies on expansion properties in mortar containing waste glass and fibers. Cement and Concrete Research, 34(7), 1145-1152. https://doi.org/10.1016/j.cemconres.2003.12.005
- PN-88/B-06250:1988. Plain concrete.
- PN-EN 1008:2004. Concrete batch water – Specification for the sampling, testing and assessment of the suitability of concrete batch water, including recycled water from concrete production processes.
- PN-EN 1015-11:2020-04. Test methods for mortars for masonry – Part 11: Determination of flexural and compressive strength of hardened mortar.
- PN-EN 1015-18:2003. Test methods for mortars for masonry – Part 18: Determination of the coefficient of water absorption due to capillary rise of hardened mortar.
- PN-EN 1015-3:2000. Test methods for mortars for masonry – Determination of the consistency of fresh mortar (using a spreading table).
- PN-EN 1015-6:2000. Test method for masonry mortars – Determination of the volumetric density of fresh mortar.
- PN-EN 12620+A1:2010. Kruszywa do betonu.
- PN-EN 13139:2003. Mortar aggregates.
- PN-EN 196-1:2016-07. Methods of testing cement – Part 1: Determination of strength.
- PN-EN 196-3:2016-12. Test methods for cement – Part 3: Determination of setting times and volume constancy.
- PN-EN 197-1:2012. Cement – Part 1: Composition, requirements and conformity criteria for cements for general use.
- PN-EN 197-5:2021-07. Cement – Part 5: Portland multicomponent cement CEM II/C-M and multicomponent cement CEM VI.
- Rutkowska, G., Wichłowski, P., & Lipiński, R. (2018). Influence of ground glass waste on selected properties of concretes made with it. Przegląd Naukowy – Inżynieria i Kształtowanie Środowiska, 27(4), 463-475. https://doi.org/10.22630/PNIKS.2018.27.4.44
- Sikora, P., Horszczaruk, E., Rucińska, T., & Straszyńska, A. (2015). The effect of high temperature on the mechanical properties of cement mortars with glass cullet. Materiały Budowlane, 5, 116-118. (in Polish).
- Sordoń-Kulibaba B. (2008). Management of glass waste and glass packaging. Glass and Ceramics, 4, 15-17 (In Polish).
- Śliwiński, J., Gąciarz, B., Luchter-Marchewka, E., & Zych, T. (1997). Building materials. Laboratoryexercises. Kraków: Politechnika Krakowska. (in Polish).
- Szymański, E. (2020). Building materials.Warszawa: Oficyna Wydawnicza WSEiZ.(in Polish).
- Tamanna, N., & Tuladhar, R. (2020). Sustainable use of recycled glass powder as cement replacement in concrete. The Open Waste Management Journal, 13, 1-13. https://scispace.com/pdf/sustainable-use-of-recycled-glass-powder-as-cement-1esd79c5dk.pdf
- Wierzbowska-Kujda, M. (2024). Lessy, piasek czy torf – NIK wzięła pod lupę nielegalne wydobycie kopalin. Teraz środowisko. https://www.teraz-srodowisko.pl/aktualnosci/Nielegalne-wydobycie-kopalin-statystyki-mazowieckie-piasek-zasoby-Polska-NIK-14561.html (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07cd9dcd-f0f6-4792-a220-c4d231bf7f4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.