Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The fundamental aim of the research is to investigate the microstructure and mechanical properties of the AA2519-T62 laser beam welded joints obtained with various values of welding velocity. For the constant value of laser power (3.2 kW) three joints have been produced with various values of welding velocity: 0.8, 1.1, and 1.4 m/min. The joints have been subjected to microstructure analysis (including both light and scanning electron microscope), microhardness measurements, tensile tests, and fractography of tensile samples. The established values of joint efficiency contain within the range of 55-66% with the highest value (66%) reported for the joint obtained with 1.1 m/min welding velocity. The produced welds have noticeable participation of pores, which tends to increase together with the value of welding velocity. In all cases, the failure has occurred in the fusion zone by ductile fracture.
Wydawca
Czasopismo
Rocznik
Strony
57--69
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
- Military University of Technology, Faculty of Mechanical Engineering, Warsaw, Poland
autor
- Military University of Technology, Faculty of Mechanical Engineering, Warsaw, Poland
autor
- Military University of Technology, Faculty of Mechanical Engineering, Warsaw, Poland
autor
- Military University of Technology, Faculty of Mechanical Engineering, Warsaw, Poland
autor
- Military University of Technology, Faculty of Mechanical Engineering, Warsaw, Poland
Bibliografia
- 1. Płonka, B.; Rajda, M.; Zamkotowicz, Z.; Zelechowski, J.; Remsak, K.; Korczak, P.; Szymański, W.; Sniezek, L. Studies of the AA2519 Alloy Hot Rolling Process and Cladding with EN AW-1050A Alloy. Archives of Metallurgy and Materials 2016, 61, 381–388, doi:10.1515/amm-2016-0070.
- 2. Liang, X.; Li, H.; Li, Z.; Hong, T.; Ma, B.; Liu, S.; Liu, Y. Study on the Microstructure in a Friction Stir Welded 2519-T87 Al Alloy. Materials & Design 2012, 35, 603–608, doi:10.1016/j.matdes.2011.10.009.
- 3. Kosturek, R.; Torzewski, J.; Joska, Z.; Wachowski, M.; Śnieżek, L. The Influence of Tool Rotation Speed on the Low-Cycle Fatigue Behavior of AA2519-T62 Friction Stir Welded Butt Joints. Engineering Failure Analysis 2022, 142, 106756, doi:10.1016/j.engfailanal.2022.106756.
- 4. Kashaev, N.; Ventzke, V.; Çam, G. Prospects of Laser Beam Welding and Friction Stir Welding Processes for Aluminum Airframe Structural Applications. Journal of Manufacturing Processes 2018, 36, 571–600, doi:10.1016/j.jmapro.2018.10.005.
- 5. Ion, J.C. Laser Beam Welding of Wrought Aluminium Alloys. Science and Technology of Welding and Joining 2000, 5, 265–276, doi:10.1179/136217100101538308.
- 6. Czupryński, A.; Janicki, D.; Górka, J.; Grabowski, A.; Wyględacz, B.; Matus, K.; Karski, W. High-Power Diode Laser Surface Transformation Hardening of Ferrous Alloys. Materials 2022, 15, 1915, doi:10.3390/ma15051915.
- 7. Xiao, R.; Zhang, X. Problems and Issues in Laser Beam Welding of Aluminum–Lithium Alloys. Journal of Manufacturing Processes 2014, 16, 166–175, doi:10.1016/j.jmapro.2013.10.005.
- 8. Żaba, K.; Tuz, L.; Noga, P.; Rusz, S.; Zabystrzan, R. Effect of Multi-Variant Thermal Treatment on Microstructure Evolution and Mechanical Properties of AlSi10Mg Processed by Direct Metal Laser Sintering and Casting. Materials 2022, 15, 974, doi:10.3390/ma15030974.
- 9. Rogala-Wielgus, D.; Majkowska-Marzec, B.; Zieliński, A.; Bartmański, M.; Bartosewicz, B. Mechanical Behavior of Bi-Layer and Dispersion Coatings Composed of Several Nanostructures on Ti13Nb13Zr Alloy. Materials 2021, 14, 2905, doi:10.3390/ma14112905.
- 10. Liu, Y.; Zhang, C.-C.; Zhang, X.-Y.; Huang, Y.-C. Understanding Grain Refinement of Sc Addition in a Zr Containing Al-Zn-Mg-Cu Aluminum Alloy from Experiments and First-Principles. Intermetallics 2020, 123, 106823, doi:10.1016/j.intermet.2020.106823.
- 11. Smolej, A., Markoli, B., Nagode, A., Klobčar, D. Influence of minor scandium and zirconium additions on the microstructure of Al and Al-5Mg alloy, RMZ-materials and geoenvironment 2015, 62, 73-80, ISSN 1408-7073.
- 12. Guan, R.; Tie, D. A Review on Grain Refinement of Aluminum Alloys: Progresses, Challenges and Prospects. Acta Metallurgica Sinica (English Letters) 2017, 30, doi:10.1007/s40195-017-0565-8.
- 13. Norman, A.F.; Birley, S.S.; Prangnell, P.B. Development of New High Strength Al – Sc Filler Wires for Fusion Welding 7000 Series Aluminium Aerospace Alloys. Science and Technology of Welding and Joining 2003, 8, 235–245, doi:10.1179/136217103225010989.
- 14. Liu, T.; Zhan, X.; Zhao, Y.; Bai, M.; Gong, X. Study on 2219 Aluminum Alloy T-Joint during Dual Laser-Beam Bilateral Synchronous Welding : Effect of the Welding Speed and Incident Beam Angle on Grain Morphology. Optics & Laser Technology 2019, 119, 105594, doi:10.1016/j.optlastec.2019.105594.
- 15. Kang, Y.; Zhan, X.; Qi, C.; Shi, L.; Wang, Q. Grain Growth and Texture Evolution of Weld Seam during Solidification in Laser Beam Deep Penetration Welding of 2219 Aluminum Alloy. Materials Research Express 2019, 6, 1165e3, doi:10.1088/2053-1591/ab4f13.
- 16. Enz, J.; Iwan, H.; Riekehr, S.; Ventzke, V.; Kashaev, N. Fracture Behavior of a Laser Beam Welded High-Strength Al-Zn Alloy. Procedia Materials Science 2014, 3, 1828–1833, doi:10.1016/j.mspro.2014.06.295.
- 17. Kosturek, R.; Sniezek, L.; Grzelak, K.; Wachowski, M. Research on the Microstructure of Laser Beam Welded Sc-Modified AA2519-F Extrusion. Archives of Metallurgy and Materials 2022, 67, 773–778, doi:10.24425/amm.2022.137817.
- 18. Faye, A.; Balcaen, Y.; Lacroix, L.; Alexis, J. Effects of Welding Parameters on the Microstructure and Mechanical Properties of the AA6061 Aluminium Alloy Joined by a Yb: YAG Laser Beam. Journal of Advanced Joining Processes 2021, 3, 100047, doi:10.1016/j.jajp.2021.100047.
- 19. Zhang, X.; Huang, T.; Yang, W.; Xiao, R.; Liu, Z.; Li, L. Microstructure and Mechanical Properties of Laser Beam-Welded AA2060 Al-Li Alloy. Journal of Materials Processing Technology 2016, 237, 301–308, doi:10.1016/j.jmatprotec.2016.06.021.
- 20. Chen, C.; Gao, M.; Mu, H.; Zeng, X. Microstructure and Mechanical Properties in Three-Dimensional Laser-Arc Hybrid Welding of AA2219 Aluminum Alloy. Journal of Laser Applications 2019, 31, 032005, doi:10.2351/1.5094804.
- 21. Fuller, C.B.; Mahoney, M.W.; Calabrese, M.; Micona, L. Evolution of Microstructure and Mechanical Properties in Naturally Aged 7050 and 7075 Al Friction Stir Welds. Materials Science and Engineering: A 2010, 527, 2233–2240, doi:10.1016/j.msea.2009.11.057.
- 22. Zhu, H.; Huang, L.; Wang, Z.; Li, J.; Ma, H.; Su, H. Fracture Behaviour of Laser-Welded 2219-T6 Aluminium Alloy under Pulsed Lorentz Force. Journal of Materials Science 2019, 54, 9857–9874, doi:10.1007/s10853-019-03588-4.
- 23. Ardika, R.D.; Triyono, T.; Muhayat, N. A Review Porosity in Aluminum Welding. Procedia Structural Integrity 2021, 33, 171–180, doi:10.1016/j.prostr.2021.10.021.
- 24. Examilioti, T.N.; Kashaev, N.; Enz, J.; Klusemann, B.; Alexopoulos, N.D. On the Influence of Laser Beam Welding Parameters for Autogenous AA2198 Welded Joints. The International Journal of Advanced Manufacturing Technology 2020, 110, 2079–2092, doi:10.1007/s00170-020-05893-8.
- 25. Alfieria, V.; Caiazzoa, F.; Sergi, V. Autogenous Laser Welding of AA 2024 Aluminium Alloy: Process Issues and Bead Features. Procedia CIRP 2015, 33, 406–411, doi:10.1016/j.procir.2015.06.094.
Uwagi
1) Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
2) Błędna numeracja stron. Wszystkie nieparzyste strony w dokumencie oznaczone jako str. 53.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-073ff155-c5be-480d-8966-6082d9dcb44a