PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of regeneration and filtration mechanism in diesel particulate filter for development of composite regeneration emission control system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pre-treatment techniques employed for exhaust emission control of compression ignition engines were found to reduce the emission levels by small percentage only, failing to meet the required emission regulations. Post-treatment technique including diesel particulate filtration, diesel oxidation catalysis and selective catalytic reduction is found to be an effective solution. While the fuel-based regeneration of diesel particulate filter leads to uncontrolled combustion affecting the durability of the filter. Development of an effective regeneration system is one of the major technical challenges faced by automotive industry for meeting emission norms. A composite regeneration system with the application of microwave energy is proposed in this paper. As an initial phase, a three-dimensional model of the system is developed and its flow analysisis carried out by considering the case of single channel flow. Simulation of the regeneration process is also done by developing a Simulink model. The results of simulation showed that an engine running continuously for a period of 24 hours would require three regenerations.
Słowa kluczowe
Rocznik
Strony
277--290
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Mechanical Engineering Department, University of Petroleum and Energy Studies, School of Engineering, Dehradun, India
  • Mechanical Engineering Department, University of Petroleum and Energy Studies, School of Engineering, Dehradun, India
autor
  • Ecole Polytechnique, University of Orleans, France
Bibliografia
  • [1] F. Di Natale and C. Carotenuto. Particulate matter in marine diesel engines exhausts: Emissions and control strategies. Transportation Research Part D: Transport and Environment, 40:166– 191, 2015. doi: 10.1016/j.trd.2015.08.011.
  • [2] X. Feng, Y. Ge, C. Ma, J. Tan, J. Li, and X. Wang. Experimental study on the nitrogen dioxide and particulate matter emissions from diesel engine retrofitted with particulate oxidation catalyst. Science of The Total Environment, 472:56–62,2014. doi: 10.1016/j.scitotenv.2013.11.041.
  • [3] D. Wang, Z.C. Liu, J. Tian, J.W. Liu, and J.R. Zhang. Investigation of particle emission characteristics from a diesel engine with a diesel particulate filter for alternative fuels. International Journal of Automotive Technology, 13(7):1023–1032, 2012. doi: 10.1007/s12239-012-0105-5.
  • [4] D. Carder, R. Ryskamp, M. Besch, and A. Thiruvengadam. Emissions control challenges for compression ignition engines. Procedia IUTAM, 20:103–111, 2017. doi: 10.1016/j.piutam.2017.03.015.
  • [5] M.V.S. Murali Krishna, N. Janardhan, P.V.K. Murthy, P. Ushasri, and N. Sarada. A comparative study of the performance of alow heat rejection engine with three different levels of insulation with vegetable oil operation. Archive of Mechanical Engineering, 59(1):101–128, 2012. doi: 10.2478/v10180-012-0006-1.
  • [6] M.V.S. Murali Krishna, N. Durga Prasada Rao, B. Anjeneya Prasad, and P.V.K. Murthy. Comparative performance with different versions of low heat rejection combustion chambers with crude rice bran oil. Archive of Mechanical Engineering, 61(4):628–651, 2014. doi: 10.2478/meceng2014-0036.
  • [7] Y. Singh, A. Singla, A. Kumar, and D. Kumar. Friction and wear characteristics of jatropha oil-based biodiesel blended lubricant at different loads. Energy Sources, Part A: Recovery, Utilzation, and Environmental Effects, 38(18):2749–2755, 2016. doi: 10.1080/15567036.2015.1107924.
  • [8] S. Senthilraja, K.C.K. Vijayakumar, and R. Gangadevi. Effects of specific fuel consumption and exhaust emissions of four stroke diesel engine with CuO/water nanofluid as coolant. Archive of Mechanical Engineering, 64(1):111–121, 2017. doi: 10.1515/meceng-2017-0007.
  • [9] C. Guan, X. Li, B. Liao, and Z. Huang. Effects of fuel injection strategies on emissions characteristics of a diesel engine equipped with a particle oxidation catalyst (POC). Journal of Environmental Chemical Engineering, 4(4):4822–4829, 2016. doi: 10.1016/j.jece.2016.01.037.
  • [10] H. Caliskanand K. Mori. Environmental, enviroeconomic and enhanced thermodynamic analyses of a diesel engine with diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) after treatment systems. Energy, 128:128–144, 2017. doi: 10.1016/j.energy.2017.04.014.
  • [11] H. Huang, B. Jiang, L. Gu, Z. Qi, and H. Lu. Promoting effect of vanadium on catalytic activity of Pt/Ce-Zr-O diesel oxidation catalysts. Journal of Environmental Science, 33:135–142, 2015. doi: 10.1016/j.jes.2014.10.026.
  • [12] J.R. Serrano, H. Climent, P. Piqueras, and E. Angiolini. Filtration modelling in wall-flow particulate filters of low soot penetration thickness. Energy, 112:883–898, 2016. doi: 10.1016/j.energy.2016.06.121.
  • [13] V. Palma, E. Meloni, M. Caldera, D. Lipari, V. Pignatelli, and V. Gerardi. Catalytic wall flow filters for soot abatement from biomass boilers. Chemical Engineering Transactions, 50:253–258, 2016. doi: 10.3303/CET1650043.
  • [14] Q. Dawei, L. Jun, and L. Yu. Research on particulate filter simulation and regeneration control strategy. Mechanical Systems and Signal Processing, 87(Part B):214–226, 2017. doi: 10.1016/j.ymssp.2016.05.039.
  • [15] V. Bermúdez, J.R. Serrano, P. Piqueras, and O. García-Afonso. Pre-DPF water injection technique for pressure drop control in loaded wall-flow diesel particulate filters. Applied Energy, 140:234–245, 2015. doi: 10.1016/j.apenergy.2014.12.003.
  • [16] D.H. Lee, H. Kim, Y.H. Song, and K.T. Kim. Plasma burner for active regeneration of diesel particulate filter. Plasma Chemistry and Plasma Processing, 34(1):159–173, 2014. doi: 10.1007/s11090-013-9507-z.
  • [17] H. Ranji-Burachaloo, S. Masoomi-Godarzi, A.A. Khodadadi, and Y. Mortazavi. Synergetic effects of plasma and metal oxide catalysts on diesel soot oxidation. Applied Catalysis B: Environmental, 182:74–84, 2016. doi: 10.1016/j.apcatb.2015.09.019.
  • [18] K. Graupner, J. Binner, N. Fox, C.P. Garner, J.E. Harry, D. Hoare, K.S. Ladha, A. Mason, and A.M. Williams. Pulsed discharge regeneration of diesel particulate filters. Plasma Chemistry and Plasma Processing, 33:467–477, 2013. doi: 10.1007/s11090-013-9433-0.
  • [19] Q. Zuo, J.E, J. Gong, D.M. Zhang, T. Chen, and G. Jia. Performance evaluation on field synergy and composite regeneration by coupling cerium-based additive and microwave for a diesel particulate filter. Journal of Central South University, 21(12):4599–4606, 2014. doi: 10.1007/s11771-014-2466-6.
  • [20] C.P. Om Ariara Guhan, G. Arthanareeswaren, and K.N. Varadarajan. CFD study on pressure drop and uniformity index of three cylinder LCV exhaust system. Procedia Engineering, 127:1211–1218, 2015. doi: 10.1016/j.proeng.2015.11.466.
  • [21] R.E. Hayes, A. Fadic, J. Mmbaga, and A. Najafi. CFD modelling of the automotive catalytic converter. Catalysis Today, 188(1):94–105, 2012. doi: 10.1016/j.cattod.2012.03.015.
  • [22] H.J. Kim, B. Han, W.S Hong, W.H. Shin, G.B. Cho, Y.K. Lee, and Y.J. Kim. Development of electrostatic diesel particulate matter filtration systems combined with a metallic flow-through filter and electrostatic methods. International Journal of Automotive Technology, 11(4):447–453, 2010. doi: 10.1007/s12239-010-0055-8.
  • [23] V. Palma and E. Meloni. Microwave susceptible catalytic diesel particulate filter. Chemical Engineering Transactios, 52:445–450, 2016. doi: 10.3303/CET1652075.
  • [24] C. Kurien and A.K.Srivastava. Active regeneration of diesel particulate filter using microwave energy for exhaust emission control. Proceedings of ICICCD 2017. Intelligent Communication, Control and Devices, 624:1233–1241, 2018. doi: 10.1007/978-981-10-5903-2_129.
  • [25] M. Terada, K. Kawamura, I. Kagomiya, K. Kakimoto, and H. Ohsato. Effect of Ni substitution on the microwave dielectric properties of cordierite. Journal of the European Ceramic Society, 27(8–9):3045–3048, 2007. doi: 10.1016/j.jeurceramsoc.2006.11.050.
  • [26] C. Kurien and A.K. Srivastava. Investigation on power aspects in impressed current cathodic protection system. The Journal of Corrosion Science and Engineering, 20, 2017.
  • [27] K. Muralidhar. Equations Governing Flow and Transport in Porous Media. In M.K. Das, P.P. Mukherjee, and K. Muralidhar, editors, Modeling Transport Phenomena in Porous Media with Applications, Springer, 2018, pp. 15–63. doi: 10.1007/978-3-319-69866-3_2.
  • [28] A. Dittler. The application of diesel particle filters – from past to present and beyond. Topics in Catalysis, 60(3–5):342–347, 2017. doi: 10.1007/s11244-016-0621-z.
  • [29] V.R. Pérez and A. Bueno-López. Catalytic regeneration of diesel particulate Filters: comparison of Pt and CePr active phases. Chemical Engineering Journal, 279:79–85, 2015. doi: 10.1016/j.cej.2015.05.004.
Uwagi
EN
There search work performed in thi sarticle is funded and supported by internal seed fund project grant by R&D department, UPES, Dehradun ,India.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-067e1803-9bce-4bcd-aa6f-917526b52c04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.