PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Technologia betonu napowietrzonego jako efektywna metoda zwiększenia dodatku zmielonych odpadów z cegieł w cementach wieloskładnikowych

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Air-entrained concrete technology as an effective tool for increasing the limits of brick powder percentage in blended Portland cement binders
Języki publikacji
PL EN
Abstrakty
PL
Przedstawiono kompleksowe badania doświadczalne właściwości betonu napowietrzonego, zawierającego zmielone odpady z cegieł, jako dodatek mineralny zastępujący cement portlandzki. Stwierdzono, że w przeciwieństwie do wielu wcześniejszych badań różnych rodzajów betonów wykonanych z cementu portlandzkiego z dodatkiem proszków ceramicznych, graniczny dodatek zmielonych cegieł jest znacznie większy niż często podawane 20% masy spoiwa. W przypadku większości zastosowań beton napowietrzony może być wytwarzany z cementów wieloskładnikowych zawierających 60% zmielonych odpadów z cegieł, bez pogorszenia jego właściwości inżynierskich.
EN
The complex experimental tests of the air-entrained concrete (AEC) properties, containing waste brick powder as supplementary cementing material are presented. Contrary to many previous studies, concerning of different types of concrete based on the Portland cement with ceramic powders as mineral addition, the limit for the effective use of brick powder is found to be much higher than the often reported 20% of mass of the binder. For a majority of practical applications, the designed AEC mix allows using blended cements containing up to 60% of fine red-brick ceramics without any significant worsening of the most engineering properties.
Czasopismo
Rocznik
Strony
11--24
Opis fizyczny
Bibliogr. 38 poz., il., tab.
Twórcy
autor
  • Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
  • Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
autor
  • Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
  • Institute of Chemistry, Faculty of Civil Engineering, Brno University of Technology, Czech Republic
  • Institute of Chemistry, Faculty of Civil Engineering, Brno University of Technology, Czech Republic
autor
  • Institute of Structural Mechanics, Faculty of Civil Engineering, Brno University of Technology, Czech Republic
autor
  • Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
Bibliografia
  • 1. T. C. Powers, The air requirement of frost-resistant concrete. Proceedings of the Highway Research Board, 29, 184–211 (1949).
  • 2. M. Pigeon, J. Marchand, R. Pleau, Frost resistant concrete. Constr. Build. Mat., 10, 339-348 (1996).
  • 3. L. Du, K. J. Folliard, Mechanisms of air entrainment in concrete. Cem. Concr. Res. 35, 1463– 1471 (2005).
  • 4. H. S. Shang, T. H. Yi, Freeze-Thaw Durability of Air-Entrained Concrete. The Scientific World Journal 2013; Article ID 650791, 6 pages, http://dx.doi.org/10.1155/2013/650791.
  • 5. G. F. Peng, Q. Ma, H. M. Hu, R. Gao, Q. F. Yao, Y. F. Liu, The effects of air entrainment and pozzolans on frost resistance of 50–60 MPa grade concrete. Constr. Build. Mat., 21, 1034–1039 (2007).
  • 6. B. Lazniewska-Piekarczyk, The type of air-entraining and viscosity modifying admixtures and porosity and frost durability of high performance self-compacting concrete. Constr. Build. Mat., 40, 659–671 (2013).
  • 7. H. Garbalinska, A. Wygocka, Microstructure modification of cement mortars: Effect on capillarity and frost-resistance. Constr. Build. Mat., 51, 258–266 (2014).
  • 8. P. Van den Heede, J. Furniere, N. De Belie, Influence of air entraining agents on deicing salt scaling resistance and transport properties of high-volume fly ash concrete. Cem. Concr. Comp., 37, 293–303 (2013).
  • 9. M. A. Glinicki, M. Zielinski, Frost salt scaling resistance of concrete containing CFBC fly ash. Materials and Structures, 42, 993–1002 (2009).
  • 10. Z. Giergiczny, M. A. Glinicki, M. Sokołowski, M. Zielinski, Air void system and frost-salt scaling of concrete containing slag-blended cement. Constr. Build. Mat., 23, 2451–2456 (2009).
  • 11. K. Sisomphon, O. Copuroglu, A. L. A. Fraaij, Development of blast furnace slag mixtures against frost salt attack. Cem. Concr. Comp., 32, 630–638 (2010).
  • 12. N. M. Al-Akhras, Durability of metakaolin concrete to sulfate attack. Cem. Concr. Res., 36, 1727–1734 (2006).
  • 13. A. A. Ramezanianpour, M. J. Nadooshan, M. Peydayesh, A. M. Ramezanianpour, Effect of Entrained Air Voids on Salt Scaling Resistance of Concrete Containing a New Composite Cement. KSCE Journal of Civil Engineering, 18, 213-219 (2014).
  • 14. J. Ambroise, M. Murat, J. Pera, Hydration reaction and hardening of calcined clays and related minerals. V – extension of the research and general conclusions. Cem. Concr. Res., 15, 261–268 (1985).
  • 15. C. He, B. Osbaeck, E. Makovicky, Pozzolanic reactions of six principal clay minerals activation, reactivity assessments and technological effects. Cem. Concr. Res. 25, 1691–702 (1995).
  • 16. G. Baronio, L. Binda, Study of the pozzolanicity of some bricks and clays. Constr. Build. Mat., 11, 41–46 (1997).
  • 17. R. D. Toledo Filho, J. P Gonçalves, B. B. Americano, E. M. R. Fairbairn, Potential for use of crushed waste calcined-clay brick as a supplementary cementitious material in Brazil. Cem. Concr. Res. 37, 1357–1365 (2007).
  • 18. A. E. Lavat, M. A. Trezza, M. Poggi, Characterization of ceramic roof tile wastes as pozzolanic admixture. Waste Management, 29, 1666–1674 (2009).
  • 19. L. A. Pereira-de-Oliveira, J. P. Castro-Gomes, P.M.S. Santos, The potential pozzolanic activity of glass and red-clay ceramic waste as cement mortars components. Constr. Build. Mat., 31, 197–203 (2012).
  • 20. M. Schneider, M. Romer, M. Tschudin, H. Bolio, Sustainable cement production-present and future. Cem. Concr. Res., 41, 642–650 (2011).
  • 21. F. Pacheco-Torgal, S. Jalali, Reusing ceramic wastes in concrete. Constr. Build. Mat., 24, 832–838 (2010).
  • 22. E. Vejmelková, M. Keppert, P. Rovnaníková, M. Ondráček, Z. Keršner, R. Černý, Properties of high performance concrete containing fine-ground ceramics as supplementary cementitious material. Cem. Concr. Comp., 34, 55-61 (2012).
  • 23. M. C. Bignozzi, A. Saccani, Ceramic waste as aggregate and supplementary cementing material: A combined action to contrast alkali silica reaction (ASR). Cem. Concr. Comp., 34, 1141–1148 (2012).
  • 24. C. Medina, P. F. G. Banfill, M.I. Sánchez de Rojas, M. Frías, Rheological and calorimetric behaviour of cements blended with containing ceramic sanitary ware and construction/demolition waste. Constr. Build. Mat., 40, 822–831 (2013).
  • 25. J. Katzer, Strength performance comparison of mortars made with waste fine aggregate and ceramic fume. Constr. Build. Mat., 47, 1–6 (2013).
  • 26. S. Roels, J. Carmeliet, H. Hens, O. Adan, H. Brocken, R. Černý, Z. Pavlík, C. Hall, K. Kumaran, L. Pel, R. Plagge, Interlaboratory Comparison of Hygric Properties of Porous Building Materials. Journal of Thermal Envelope and Building Science, 27, 307-325 (2004).
  • 27. ČSN EN 12390-3, Testing of hardened concrete – Part 3: Compressive strength. Czech Office for Standards, Metrology and Testing, Prague 2002.
  • 28. B. L. Karihaloo, Fracture Mechanics of Concrete. Longman Scientific & Technical, New York 1995.
  • 29. RILEM Committee 50-FMC, Determination of the Fracture Energy of Mortar and Concrete by Means of Three-Point Bend Test on Notched Beams. Materials and Structures, 18, 258–290 (1985).
  • 30. E. Vejmelková, M. Pavlíková, M. Jerman, R. Černý, Free Water Intake as Means of Material Characterization. Journal of Building Physics, 33, 29-44 (2009).
  • 31. M. K. Kumaran, Moisture Diffusivity of Building Materials from Water Absorption Measurements. Journal of Thermal Envelope and Building Science, 22, 349-355 (1999).
  • 32. ČSN 73 1322/Z1:1968, Concrete testing – Hardened concrete – Frost resistance. Czech Office for Standards, Metrology and Testing, Prague 2003.
  • 33. ČSN 731326/Z1:1984, Determination of the resistance of the surface of concrete against water and de-icing salts. Czech Office for Standards, Metrology and Testing, Prague 2003.
  • 34. E. Vejmelková, M. Pavlíková, M. Keppert, Z. Keršner, P. Rovnaníková, M. Ondráček, M. Sedlmajer, R. Černý, High performance concrete with Czech metakaolin: Experimental analysis of strength, toughness and durability characteristics. Constr. Build. Mat., 24, 1404-1411 (2010).
  • 35. ČSN EN 12350-2, Testing of fresh concrete – Part 2: Slump test. Czech Office for Standards, Metrology and Testing, Prague 2000.
  • 36. V. Tydlitát, J. Zákoutský, P. Volfová, R. Černý, Hydration heat development in blended cements containing fine-ground ceramics. Thermochimica Acta, 543, 125–129 (2012).
  • 37. M. O’Farrell, B. B. Sabir, S. Wild, Strength and chemical resistance of mortars containing brick manufacturing clays subjected to different treatments. Cem. Concr. Comp., 28, 790–799 (2006).
  • 38. Z. Pavlík, L. Fiala, E. Vejmelková, R. Černý, Application of Effective Media Theory for Determination of Thermal Properties of Hollow Bricks as a Function of Moisture Content. Inter. J. Thermophysics, 34, 894-908 (2013).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05dca9ea-1dfd-47a8-bc19-eb846784aa1e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.