PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Hafnium and Zirconium to Glass Forming Ability, Thermal Stability, Plasticity Deformation and Crystallization of Ni-Free Pentabasic Ti-Based Bulk Metallic Glasses

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The newly designed Ti-based bulk metallic glass (BMG) in which case of fracture behavior was observed 1990MPa to compressive strength with a wide plastic deformation around 7% after process of elastic deformation. This phenomenon can be compared with those of Ti-based alloys and other Ti-based BMGs and indicates high potential to be applied in use. It was evaluated the Ti-based BMG for thermal stability that the reduced glass parameters, ΔTx, Trg and γ, are 79K, 0.50 and 0.38, respectively. In addition, it reveals high activation energies for crystallization in which are estimated to Ex1 = 291.77 ±9.71 kJ/mol, Ex2 = 588.77 ±28.88 kJ/mol and Ex3 = 330.26 ±3.61 kJ/mol on kissinger plotting in this study.
Twórcy
autor
  • Material Analysis Laboratory, DAE-IL Corporation, 8, Bonggyenonggong-Gil, Dudong-Myeon, Ulju-Gun, Ulsan 44914, Korea (Republic of)
autor
  • Department of Materials Science and Engineering, Pusan National University, Busan, Korea (Republic of)
autor
  • Department of Materials Science and Engineering, Pusan National University, Busan, Korea (Republic of)
autor
  • Department of Materials Science and Engineering, Pusan National University, Busan, Korea (Republic of)
  • Social Enterprise, Pusan National University, Busan, Korea (Republic of)
Bibliografia
  • [1] A. Inoue, Acta Mater. 48, 279-306 (2000).
  • [2] M.W. Chen, Npg Asia Materials 3, 82-90 (2011).
  • [3] J.J. Oak, A. Inoue, Mater. Scie. Eng. A 449, 220-224 (2007).
  • [4] J.J. Oak, A. Inoue, J. Non-Cryst. Solids 354, 1828-1832 (2008).
  • [5] J.J. Oak, D.V. Louzguine-Luzgin, A. Inoue, Appl. Phys. Lett. 91, 053106 (2007).
  • [6] J.J. Oak, D.V. Louzguine-Luzgin, A. Inoue, J. Mater. Res. 22, 1346-1353 (2007).
  • [7] J.J. Oak, D.V. Louzguine-Luzgin, A. Inoue, Mater. Scie. Eng. C, 29, 322-327 (2009).
  • [8] L. Bai, C.X. Cui, Q.Z. Wang, S.J. Bu, Y.M. Qi, J. Non-Cryst. Solids 354, 3935-3938 (2008).
  • [9] C.R. Barrett, W.D. Nix, A.S. Tetelman, The principles of engineering materials, Prentice-Hall, Englewood Cliffs, N.J., 1973.
  • [10] J.J. Oak, H. Kimura, A. Inoue, Advanced Materials Research 26-28, 785-788 (2007).
  • [11] R. Arroyave, T.W. Eagar, L. Kaufman, J. Alloy. Compd. 351, 158-170 (2003).
  • [12] U.E. Klotz, C.L. Liu, P.J. Uggowitzer, J.F. Loffler, Intermetallics 15, 1666-1671 (2007).
  • [13] P.G. Qin, H. Wang, L.G. Zhang, H.S. Liu, Z.P. Jin, Mater. Scie. Eng. A 476, 83-88 (2008).
  • [14] H.E. Kissinger, Anal. Chem. 29, 1702-1706 (1957).
  • [15] M.V. Susic, Mater. Chem. Phys. 12, 99-109 (1985).
  • [16] J.N. Mei, J.S. Li, H.C. Kou, J.L. Soubeyroux, H.Z. Fu, L. Zhou, J. Alloy. Compd. 467, 235-240 (2009).
  • [17] K.F. Xie, K.F. Yao, T.Y. Huang, Intermetallics 18, 1837-1841 (2010).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04d1b14f-697b-43a5-84f7-b3f66fcbdfc4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.