PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal state observation using quadratic boundedness: Application to UAV disturbance estimation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the design of a state observer which guarantees quadratic boundedness of the estimation error. By using quadratic Lyapunov stability analysis, the convergence rate and the ultimate (steady-state) error bounding ellipsoid are identified as the parameters that define the behaviour of the estimation. Then, it is shown that these objectives can be merged in a scalarised objective function with one design parameter, making the design problem convex. In the second part of the article, a UAV model is presented which can be made linear by considering a particular state and frame of reference. The UAV model is extended to incorporate a disturbance model of variable size. The joint model matches the structure required to derive an observer, following the lines of the proposed design approach. An observer for disturbances acting on the UAV is derived and the analysis of the performances with respect to the design parameters is presented. The effectiveness and main characteristics of the proposed approach are shown using simulation results.
Rocznik
Strony
99--109
Opis fizyczny
Bibliogr. 46 poz., wykr.
Twórcy
  • Specific Research Center CS2AC, Polytechnic University of Catalonia (UPC), Rbla. Sant Nebridi 22, 08222 Terrassa, Spain
  • Specific Research Center CS2AC, Polytechnic University of Catalonia (UPC), Rbla. Sant Nebridi 22, 08222 Terrassa, Spain; Institute of Robotics and Industrial Informatics (CSIC-UPC), Polytechnic University of Catalonia (UPC), Llorens i Artigas 4–6, 08028 Barcelona, Spain
  • Specific Research Center CS2AC, Polytechnic University of Catalonia (UPC), Rbla. Sant Nebridi 22, 08222 Terrassa, Spain
autor
  • Specific Research Center CS2AC, Polytechnic University of Catalonia (UPC), Rbla. Sant Nebridi 22, 08222 Terrassa, Spain; Institute of Robotics and Industrial Informatics (CSIC-UPC), Polytechnic University of Catalonia (UPC), Llorens i Artigas 4–6, 08028 Barcelona, Spain
Bibliografia
  • [1] Abbaszadeh, M. and Marquez, H.J. (2009). LMI optimization approach to robust H∞ observer design and static output feedback stabilization for discrete-time nonlinear uncertain systems, International Journal of Robust and Nonlinear Control 19(3): 313–340.
  • [2] Alessandri, A. (2004). Observer design for nonlinear systems by using input-to-state stability, 43rd IEEE Conference on Decision and Control, 2004. CDC, Nassau, The Bahamas, Vol. 4, pp. 3892–3897.
  • [3] Alessandri, A., Baglietto, M. and Battistelli, G. (2004). On estimation error bounds for receding-horizon filters using quadratic boundedness, IEEE Transactions on Automatic Control 49(8): 1350–1355.
  • [4] Alessandri, A., Baglietto, M. and Battistelli, G. (2006). Design of state estimators for uncertain linear systems using quadratic boundedness, Automatica 42(3): 497–502.
  • [5] Alessandri, A. (2013). Design of time-varying state observers for nonlinear systems by using input-to-state stability, American Control Conference (ACC), Washington, DC, USA, pp. 280–285.
  • [6] Brockman, M.L. and Corless, M. (1995). Quadratic boundedness of nonlinear dynamical systems, 34th IEEE Conference on Decision and Control, New Orleans, LA, USA, Vol. 1, pp. 504–509.
  • [7] Brockman, M.L. and Corless, M. (1998). Quadratic boundedness of nominally linear systems, International Journal of Control 71(6): 1105–1117.
  • [8] Buciakowski, M., Witczak, M., Mrugalski, M. and Theilliol, D. (2017a). A quadratic boundedness approach to robust DC motor fault estimation, Control Engineering Practice 66: 181–194.
  • [9] Buciakowski, M., Witczak, M., Puig, V., Rotondo, D., Nejjari, F. and Korbicz, J. (2017b). A bounded-error approach to simultaneous state and actuator fault estimation for a class of nonlinear systems, Journal of Process Control 52: 14–25.
  • [10] Busawon, K.K. and Kabore, P. (2001). Disturbance attenuation using proportional integral observers, International Journal of Control 74(6): 618–627.
  • [11] Chadli, M. and Karimi, H.R. (2013). Robust observer design for unknown inputs Takagi–Sugeno models, IEEE Transactions on Fuzzy Systems 21(1): 158–164.
  • [12] Chen, W.-H., Ballance, D.J., Gawthrop, P.J. and O’Reilly, J. (2000). A nonlinear disturbance observer for robotic manipulators, IEEE Transactions on Industrial Electronics 47(4): 932–938.
  • [13] Chen, W.-H., Yang, J., Guo, L. and Li, S. (2016). Disturbance-observer-based control and related methods—an overview, IEEE Transactions on Industrial Electronics 63(2): 1083–1095.
  • [14] Chibani, A., Chadli, M., Shi, P. and Braiek, N.B. (2017). Fuzzy fault detection filter design for T–S fuzzy systems in the finite-frequency domain, IEEE Transactions on Fuzzy Systems 25(5): 1051–1061.
  • [15] Ding, B. (2009). Quadratic boundedness via dynamic output feedback for constrained nonlinear systems in Takagi–Sugeno’s form, Automatica 45(9): 2093–2098.
  • [16] Ding, B. (2013). New formulation of dynamic output feedback robust model predictive control with guaranteed quadratic boundedness, Asian Journal of Control 15(1): 302–309.
  • [17] Ding, B. and Pan, H. (2016). Output feedback robust MPC for LPV system with polytopic model parametric uncertainty and bounded disturbance, International Journal of Control 89(8): 1554–1571.
  • [18] Godbole, A.A., Kolhe, J.P. and Talole, S.E. (2013). Performance analysis of generalized extended state observer in tackling sinusoidal disturbances, IEEE Transactions on Control Systems Technology 21(6): 2212–2223.
  • [19] Grip, H.F., Saberi, A. and Johansen, T.A. (2012). Observers for interconnected nonlinear and linear systems, Automatica 48(7): 1339–1346.
  • [20] Hartman, D., Landis, K., Mehrer, M., Moreno, S. and Kim, J. (2014). Quadcopter dynamic modeling and simulation (Quad-Sim), https://github.com/dch33/Quad-Sim.
  • [21] Hassani, H., Zarei, J., Chadli, M. and Qiu, J. (2017). Unknown input observer design for interval type-2 T–S fuzzy systems with immeasurable premise variables, IEEE Transactions on Cybernetics 47(9): 2639–2650.
  • [22] Johnson, C. (1971). Accommodation of external disturbances in linear regulator and servomechanism problems, IEEE Transactions on Automatic Control 16(6): 635–644.
  • [23] Kelly, J. and Sukhatme, G. S. (2011). Visual-inertial sensor fusion: Localization, mapping and sensor-to-sensor self-calibration, The International Journal of Robotics Research 30(1): 56–79.
  • [24] Kim, K.-S., Rew, K.-H. and Kim, S. (2010). Disturbance observer for estimating higher order disturbances in time series expansion, IEEE Transactions on Automatic Control 55(8): 1905–1911.
  • [25] Koenig, D. (2005). Unknown input proportional multiple-integral observer design for linear descriptor systems: Application to state and fault estimation, IEEE Transactions on Automatic Control 50(2): 212–217.
  • [26] Kwon, S. and Chung, W. K. (2003). A discrete-time design and analysis of perturbation observer for motion control applications, IEEE Transactions on Control Systems Technology 11(3): 399–407.
  • [27] Li, S., Yang, J., Chen, W.-H. and Chen, X. (2012). Generalized extended state observer based control for systems with mismatched uncertainties, IEEE Transactions on Industrial Electronics 59(12): 4792–4802.
  • [28] Lynen, S., Achtelik, M. W., Weiss, S., Chli, M. and Siegwart, R. (2013). A robust and modular multi-sensor fusion approach applied to MAV navigation, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, pp. 3923–3929.
  • [29] Ping, X. (2017). Output feedback robust MPC based on off-line observer for LPV systems via quadratic boundedness, Asian Journal of Control 19(4): 1641–1653.
  • [30] Ping, X., Wang, P. and Li, Z. (2017). Quadratic boundedness of LPV systems via saturated dynamic output feedback controller, Optimal Control Applications and Methods 38(6): 1239–1248.
  • [31] Miettinen, K. (1999). Nonlinear Multiobjective Optimization, International Series in Operations Research and Management Science, Vol. 12, Springer, New York, NY.
  • [32] Ros, L., Sabater, A. and Thomas, F. (2002). An ellipsoidal calculus based on propagation and fusion, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics 32(4): 430–442.
  • [33] Rotondo, D., Witczak, M., Puig, V., Nejjari, F. and Pazera, M. (2016). Robust unknown input observer for state and fault estimation in discrete-time Takagi–Sugeno systems, International Journal of Systems Science 47(14): 3409–3424.
  • [34] Ruggiero, F., Cacace, J., Sadeghian, H. and Lippiello, V. (2014). Impedance control of VToL UAVs with a momentum-based external generalized forces estimator, IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, pp. 2093–2099.
  • [35] Ruggiero, F., Cacace, J., Sadeghian, H. and Lippiello, V. (2015). Passivity-based control of VToL UAVs with a momentum-based estimator of external wrench and unmodeled dynamics, Robotics and Autonomous Systems 72: 139–151.
  • [36] Santamaria-Navarro, A., Sola, J. and Andrade-Cetto, J. (2015). High-frequency MAV state estimation using low-cost inertial and optical flow measurement units, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, pp. 1864–1871.
  • [37] She, J.-H., Fang, M., Ohyama, Y., Hashimoto, H. and Wu, M. (2008). Improving disturbance-rejection performance based on an equivalent-input-disturbance approach, IEEE Transactions on Industrial Electronics 55(1): 380–389.
  • [38] Su, J., Chen, W.-H. and Li, B. (2015). High order disturbance observer design for linear and nonlinear systems, IEEE International Conference on Information and Automation, Lijiang, China, pp. 1893–1898.
  • [39] Wang, Z., Huang, B. and Unbehauen, H. (1999). Robust h∞ observer design of linear state delayed systems with parametric uncertainty: The discrete-time case, Automatica 35(6): 1161–1167.
  • [40] Witczak, M., Buciakowski, M. and Aubrun, C. (2016). Predictive actuator fault-tolerant control under ellipsoidal bounding, International Journal of Adaptive Control and Signal Processing 30(2): 375–392.
  • [41] Witczak, M., Rotondo, D., Puig, V., Nejjari, F. and Pazera, M. (2017). Fault estimation of wind turbines using combined adaptive and parameter estimation schemes, International Journal of Adaptive Control and Signal Processing 32(4): 549–567.
  • [42] Yüksel, B., Secchi, C., Bülthoff, H.H. and Franchi, A. (2014). A nonlinear force observer for quadrotors and application to physical interactive tasks, IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Besacon, France, pp. 433–440.
  • [43] Zeitz, M. (1987). The extended Luenberger observer for nonlinear systems, Systems & Control Letters 9(2): 149–156.
  • [44] Zhang, L., Liu, X. and Kong, X. (2012a). State estimators for uncertain linear systems with different disturbance/noise using quadratic boundedness, Journal of Applied Mathematics 2012, Article ID: 101353.
  • [45] Zhang, W., Su, H., Wang, H. and Han, Z. (2012b). Full-order and reduced-order observers for one-sided Lipschitz nonlinear systems using Riccati equations, Communications in Nonlinear Science and Numerical Simulation 17(12): 4968–4977.
  • [46] Zou, T. and Li, S. (2011). Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi–Sugeno’s form, Journal of the Franklin Institute 348(10): 2849–2862.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03f65486-5210-48bd-84cc-f905e01935ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.