Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Coastal upwelling along the SE Baltic Sea coast is a common feature, especially during the warm season. It significantly lowers sea surface temperature (SST) in the coastal areas, and, therefore, may be responsible for modifying meteorological conditions in those coastal areas, where upwelling is most frequently observed. This study aims to assess the effect of coastal upwelling on the air temperature at the south-eastern coast of the Baltic Sea based on long-term period observations (2002–2021) from coastal hydrometeorological stations and satellite data. Overall, our study revealed that due to its high frequency and spatial extent, upwelling is responsible for lowering the mean summer season SST of the SE Baltic Sea coast by about 1°C. And even though upwelling is a short-term event, upwelling-induced SST drop results in cooling air temperatures in the coastal areas, i.e., the mean air temperatures during upwelling are typically 2−4°C lower than before. It was also observed that upwelling is favouring the development of advective fog. Thus, sudden changes in meteorological parameters during upwelling can have versatile effects on various socio-economic activities. The results of this study contribute to the understanding of upwelling feedback onto the lower atmosphere and, therefore, are important for advancing the accuracy of weather forecasts that are needed for coastal communities, including marine and coastal industries.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
394--404
Opis fizyczny
Bibliogr. 52 poz., fot.., map,, rys., tab., wykr.
Twórcy
autor
- Marine Research Institute, Klaipeda University, Klaip˙eda, Lithuania
autor
- Marine Research Institute, Klaipeda University, Klaip˙eda, Lithuania
- Marine Research Institute, Klaipeda University, Klaip˙eda, Lithuania
Bibliografia
- 1. Aguirre, C., Garcia-Loyola, S., Testa, G., Silva, D., Farias, L., 2018. Insight into anthropogenic forcing on coastal upwelling off south-central Chile. Elementa-Sci. Anthrop. 6, 59. https://doi.org/10.1525/elementa.314
- 2. Ali, K.E., Kouadio, K.Y., Zahiri, E.-P., Aman, A., Assamoi, A.P., Bourles, B., 2011. Influence of the Gulf of Guinea Coastal and Equatorial Upwellings on the Precipitations along its Northern Coasts during the Boreal Summer Period. Asian J. Appl. Sci. 4, 271-285. https://doi.org/10.3923/ajaps.2011.271.285
- 3. Aman, A., Toualy, E., Yoroba, F., 2018. On the Causes of the Minor Dry Season over the Coastal Region of the Northern Gulf of Guinea. Atmos. Climate Sci. 8, 121-133. https://doi.org/10.4236/acs.2018.82009
- 4. Bagdanaviˇci¯ut˙e, I., Kelpšait˙e, L., Soomere, T., 2015. Multi-criteria evaluation approach to coastal vulnerability index development in micro-tidal low-lying areas. Ocean Coast. Manage. 104, 124-135. https://doi.org/10.1016/j.ocecoaman.2014.12.011
- 5. Bakun, A., 1990. Global Climate Change and intensification of coastal ocean upwelling. Science 247, 198-201. https://doi.org/10.1126/science.247.4939.198
- 6. Brown, O.B., Minnett, P.J., 1999. MODIS Infrared Sea Surface Temperature Algorithm. University of Miami, Coral Gables, FL, USA.
- 7. Bychkova, I., Viktorov, S., 1987. Use of satellite data for identification and classification of upwelling in the Baltic Sea. Oceanology 27 (2), 158-162.
- 8. Dabuleviciene, T., Jucevicius, D., Zolubas, T., Vaiciute, D., Nika, N., 2023. The Effect of Short-Term Upwelling Events on Fish Assemblages at the South-Eastern Coast of the Baltic Sea. Water 15. https://doi.org/10.3390/w15030452
- 9. Dabuleviciene, T., Vaiciute, D., Kozlov, I.E., 2020. Chlorophyll-a Variability during Upwelling Events in the South-Eastern Baltic Sea and in the Curonian Lagoon from Satellite Observations. Remote Sens. 12 (21), 3661. https://doi.org/10.3390/rs12213661
- 10. Dabuleviciene, T., Kozlov, I.E., Vaiciute, D., Dailidiene, I., 2018. Remote Sensing of Coastal Upwelling in the South-Eastern Baltic Sea: Statistical Properties and Implications for the Coastal Environment. Remote Sens. 10 (24), 1752. https://doi.org/10.3390/rs10111752
- 11. Diffenbaugh, N.S., Snyder, M.A., Sloan, L.C., 2004. Could CO2-induced land-cover feedbacks alter near-shore upwelling regimes? Proc. Natl. Acad. Sci. USA 101, 27-32. https://doi.org/10.1073/pnas.0305746101
- 12. EYPA, 2022. AIP for LITHUANIA (section AD-2.EYPA) valid from 03 NOV 2022. Available online: https://www.oronavigacija.lt/a1/aip/004_03Nov2022/2022-11-03-AIRAC/html/eAIP/EY-AD-2.
- 13. EYPA- en- GB.html (accessed 2023-01-26). Garcia-Reyes, M., Sydeman, W.J., Schoeman, D.S., Rykaczewski, R.R., Black, B.A., Smit, A.J., Bograd, S.J., 2015. Under Pressure: Climate Change, Upwelling, and Eastern Boundary Upwelling Ecosystems. Front. Mar. Sci. 2, 109. https://doi.org/10.3389/fmars.2015.00109
- 14. Garrison, T., 2009. Essentials of Oceanography. Brooks/Cole, Cengage Learning, 384 pp.
- 15. Guo, Y., Barnett, A.G., Yu, W., Pan, X., Ye, X., Huang, C., Tong, S., 2011. A Large Change in Temperature Between Neighbouring Days Increases the Risk of Mortality. PLOS One 6, e16511. https://doi.org/10.1371/journal.pone.0016511
- 16. Gurova, E., Lehmann, A., Ivanov, A., 2013. Upwelling dynamics in the Baltic Sea studied by a combined SAR/infrared satellite data and circulation model analysis. Oceanologia 55 (3), 687-707. https://doi.org/10.5697/oc.55-3.687
- 17. Haapala, J., 1994. Upwelling and its Influence on Nutrient Concentration in the Coastal Area of the Hanko Peninsula, Entrance of the Gulf of Finland. Estuar. Coast. Shelf Sci. 38, 507-521. https://doi.org/10.1006/ecss.1994.1035
- 18. Houston, J., 2006. Variability of precipitation in the Atacama Desert: its causes and hydrological impact. Int. J. Climatol. 26, 2181-2198. https://doi.org/10.1002/joc.1359
- 19. Holt, T., Pullen, J., Blumberg, A.F., Bornstein, R.D., 2007. Atmospheric Response to Local Upwelling in the Vicinity of New York—New Jersey Harbor. J. Appl. Meteorol. Climatol. 46, 1031-1052. https://doi.org/10.1175/jam2511.1
- 20. Jacox, M.G., Edwards, C.A., Hazen, E.L., Bograd, S.J., 2018. Coastal Upwelling Revisited: Ekman, Bakun, and Improved Upwelling Indices for the US West Coast. J. Geophys. Res.-Oceans 123, 7332-7350. https://doi.org/10.1029/2018jc014187
- 21. Kämpf, J., Chapman, P., 2016. Upwelling Systems of the World: A Scientific Journey to the Most Productive Marine Ecosystems. Springer, Cham, 433 pp. https://doi.org/10.1007/978-3-319-42524-5.
- 22. Kowalewska-Kalkowska, H., Kowalewski, M., 2019. Combining Satellite Imagery and Numerical Modelling to Study the Occurrence of Warm Upwellings in the Southern Baltic Sea in Winter. Remote Sens. 11, 2982. https://doi.org/10.3390/rs11242982
- 23. Kozlov, I.E., Kudryavtsev, V.N., Johannessen, J.A., Chapron, B., Dailidiene, I., Myasoedov, A.G., 2012. ASAR imaging for coastal upwelling in the Baltic Sea. Adv. Space Res. 50, 1125-1137. https://doi.org/10.1016/j.asr.2011.08.017
- 24. Kratzer, S., Ebert, K., Sørensen, K., 2011. Monitoring the Biooptical State of the Baltic Sea Ecosystem with Remote Sensing and Autonomous In Situ Techniques. In: Harff, J., Björck, S., Hoth, P. (Eds.), The Baltic Sea Basin. Central and Eastern European Development Studies (CEEDES). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17220-5_20.
- 25. Kuliński, K., Pempkowiak, J., 2011. The carbon budget of the Baltic Sea. Biogeosciences 8, 3219-3230. https://doi.org/10.5194/bg-8-3219-2011
- 26. Laanemets, J., Kononen, K., Pavelson, J., Poutanen, E.L., 2004. Vertical location of seasonal nutriclines in the western Gulf of Finland. J. Marine Syst. 52, 1-13. https://doi.org/10.1016/j.jmarsys.2004.03.003
- 27. Laanemets, J., Vali, G., Zhurbas, V., Elken, J., Lips, I., Lips, U., 2011. Simulation of mesoscale structures and nutrient transport during summer upwelling events in the Gulf of Finland in 2006. Boreal Environ. Res. 16, 15-26.
- 28. Lehmann, A., Myrberg, K., 2008. Upwelling in the Baltic Sea — A review. J. Marine Syst. 74, S3-S12. https://doi.org/10.1016/j.jmarsys.2008.02.010
- 29. Lehmann, A., Myrberg, K., Hoflich, K., 2012. A statistical approach to coastal upwelling in the Baltic Sea based on the analysis of satellite data for 1990-2009. Oceanologia 54 (3), 369-393. https://doi.org/10.5697/oc.54-3.369
- 30. Leppäranta, M., Myrberg, K., 2009. Physical Oceanography of the Baltic Sea. Springer-Verlag, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79703-6.
- 31. Lewis, J., 2003. Sea fog off the California coast: Viewed in the context of transient weather systems. J. Geophys. Res. 108. https://doi.org/10.1029/2002jd002833
- 32. Lips, I., Lips, U., 2010. Phytoplankton dynamics affected by the coastal upwelling events in the Gulf of Finland in July—August 2006. J. Plankton Res. 32, 1269-1282. https://doi.org/10.1093/plankt/fbq049
- 33. Mann, K.H., Lazier, J.R.N., 2005. Vertical Structure in Coastal Waters: Coastal Upwelling Regions. In: Dynamics of Marine Ecosystems, Blackwell Publ., 118-161. https://doi.org/10.1002/9781118687901.ch5
- 34. Myrberg, K., Andrejev, O., 2003. Main upwelling regions in the Baltic Sea — a statistical analysis based on three-dimensional modelling. Boreal Environ. Res. 8, 97-112.
- 35. Nommann, S., Sildam, J., Noges, T., Kahru, M., 1991. Plankton distribution during a coastal upwelling event off Hiiumaa, Baltic Sea — impact of short term flow field variability. Cont. Shelf Res. 11, 95-108. https://doi.org/10.1016/0278-4343(91)90037-7
- 36. Ray, S., Swain, D., Ali, M.M., Bourassa, M.A., 2022. Coastal Upwelling in the Western Bay of Bengal: Role of Local and Remote Windstress. Remote Sens. 14 (23), 4703. https://doi.org/10.3390/rs14194703
- 37. Reddin, C.J., Docmac, F., O’Connor, N.E., Bothwell, J.H., Harrod, C., 2015. Coastal Upwelling Drives Intertidal Assemblage Structure and Trophic Ecology. PLOS One 10 (20), e0130789. https://doi.org/10.1371/journal.pone.0130789
- 38. Ritter, B., Wennrich, V., Medialdea, A., Brill, D., King, G., Schneiderwind, S., Niemann, K., Fernández-Galego, E., Diederich, J., Rolf, C., Bao, R., Melles, M., Dunai, T.J., 2019. Climatic fluctuations in the hyperarid core of the Atacama Desert during the past 215 ka. Sci. Rep. 9, 5270. https://doi.org/10.1038/s41598-019-41743-8
- 39. Rossi, V., Schaeffer, A., Wood, J., Galibert, G., Morris, B., Sudre, J., Roughan, M., Waite, A.M., 2014. Seasonality of sporadic physical processes driving temperature and nutrient high-frequency variability in the coastal ocean off southeast Australia. J. Geophys. Res.-Oceans 119, 445—460. https://doi.org/10.1002/2013jc009284
- 40. Rousi, E., Kornhuber, K., Beobide-Arsuaga, G., Luo, F., Coumou, D., 2022. Accelerated western European heatwave trends linked to more-persistent double jets over Eurasia. Nat. Commun. 13, 3851. https://doi.org/10.1038/s41467-022-31432-y
- 41. Samelson, R.M., de Szoeke, S.P., Skyllingstad, E.D., Barbour, P.L., Durski, S.M., 2021. Fog and low-level stratus in coupled oceanatmosphere simulations of the northern California Current System upwelling season. Mon. Weather Rev. 149 (5), 1593-1617. https://doi.org/10.1175/mwr-d-20-0169.1
- 42. Snyder, M.A., Sloan, L.C., Diffenbaugh, N.S., Bell, J.L., 2003. Future climate change and upwelling in the California Current. Geophys. Res. Lett. 30 (15), 1823. https://doi.org/10.1029/2003GL017647
- 43. Sproson, D., Sahlee, E., 2014. Modelling the impact of Baltic Sea upwelling on the atmospheric boundary layer. Tellus A 66 (15), 24041. https://doi.org/10.3402/tellusa.v66.24041
- 44. Suursaar, Ü., 2020. Combined impact of summer heat waves and coastal upwelling in the Baltic Sea. Oceanologia 62 (4 Pt. A), 511-524. https://doi.org/10.1016/j.oceano.2020.08.003
- 45. Suursaar, Ü., 2021. Winter upwelling in the Gulf of Finland, Baltic Sea. Oceanologia 63 (3), 356-369. https://doi.org/10.1016/j.oceano.2021.04.001
- 46. Suursaar, Ü., Meitern, H., 2021. Contribution of winter upwelling in the Gulf of Finland to lake-effect snow in Estonia. Baltica 34 (2). https://doi.org/10.5200/baltica.2021.2.1
- 47. Terminal Information Book, 2020. Available online at: https://bkt.lt/wp-content/uploads/2020/05/BKT-terminalo-informacine-knyga-2019-04-11-1.pdf (accessed 2023-01-26).
- 48. Uiboupin, R., Laanemets, J., 2009. Upwelling characteristics derived from satellite sea surface temperature data in the Gulf of Finland, Baltic Sea. Boreal Environ. Res. 14, 297-304.
- 49. Vahtera, E., Laanemets, J., Pavelson, J., Huttunen, M., Kononen, K., 2005. Effect of upwelling on the pelagic environment and bloom-forming cyanobacteria in the western Gulf of Finland, Baltic Sea. J. Marine Syst. 58, 67-82. https://doi.org/10.1016/j.jmarsys.2005.07.001
- 50. Vaiˇci¯ut˙e, D., Bresciani, M., Buˇcas, M., 2012. Validation of MERIS bio-optical products with in situ data in the turbid Lithuanian Baltic Sea coastal waters. J. Appl. Remote Sens. 6 (1), 063568. https://doi.org/10.1117/1.JRS.6.063568
- 51. Zhurbas, V., Laanemets, J., Vahtera, E., 2008. Modeling of the mesoscale structure of coupled upwelling/downwelling events and the related input of nutrients to the upper mixed layer in the Gulf of Finland, Baltic Sea. J. Geophys. Res.-Oceans 113. https://doi.org/10.1029/2007JC004280
- 52. Ziabkus, A., 2013. Baltijos j¯ur ˛a užklojo tirštas r¯ukas, lrytas.lt. Available online: https://www.lrytas.lt/zmones/pramogos/2013/07/24/news/baltijos-jura-uzklojo-tirstas-rukas-4950995 (accessed 2023-01-26).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03943238-aec4-4188-95e5-42980d041003