Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Występowanie wielopierścieniowych węglowodorów aromatycznych w popiołach paleniskowych pochodzących z indywidualnych urządzeń grzewczych
Języki publikacji
Abstrakty
Combustion of solid fuels such as coal, biomass and, contrary to the applicable law, waste in individual heating devices still remains a serious problem in Poland. It causes the generation of large amounts of pollutants and harmful substances contained not only in fly ash released into the air with smoke but also in the bottom ash, which constitutes a serious environmental problem. This paper presents the results of a comparative study on the contents of 16 polycyclic aromatic hydrocarbons (PAHs) in bottom ash from the combustion of hard coal (HC), wood (W) and a mixture of different solid fuels including municipal waste (MW), their sums and profiles. For the bottom ash samples taken for these fuels, the share of carcinogenic congeners in the sum of PAHs, toxicity, mutagenicity and carcinogenicity equivalents have also been determined. The highest content of total PAHs, amounting to an average of 20.7 ppb, was recorded for bottom ash obtained from combustion of a mixture of solid fuels and waste. For such ash, the toxicity and carcinogenicity equivalents were approximately twice as high as for other types of ash. Bottom ash was found to be dominated by benzo[a]anthracene, and the tetracyclic congeners accounted for 60-68% of all PAHs (W
Spalanie paliw stałych, m.in. węgla, biomasy, a także, mimo zakazu, odpadów komunalnych w indywidualnych systemach grzewczych stanowi w Polsce nadal poważny problem. Powoduje to powstawanie dużych ilości zanieczyszczeń i szkodliwych substancji zawartych w pyłach, które trafiają wraz z dymem do powietrza bez jakiejkolwiek kontroli, a popiół paleniskowy będący odpadem stanowi poważny problem środowiskowy. W pracy przedstawiono wyniki badań porównawczych zawartości 16 wielopierścieniowych węglowodorów aromatycznych (WWA) w popiele paleniskowym pochodzącym ze spalania węgla kamiennego (HC), drewna (W) oraz mieszaniny różnych paliw stałych, w tym odpadów komunalnych (MW), ich sumy oraz profile. Wyznaczono także udział kancerogennych kongenerów w sumie WWA, równoważniki toksyczności, mutagenności i kancerogenności. Największą zawartość sumy WWA, wynoszącą średnio 20,7 ppb, odnotowano dla popiołu paleniskowego pochodzącego ze spalania mieszaniny paliw stałych i odpadów. Dla tego popiołu równoważniki toksyczności i kancerogenności były około dwa razy wyższe niż dla pozostałych popiołów. W popiołach dominował benzo[a]antracen, a czteropierścieniowe kongenery stanowiły 60–68% wszystkich WWA (W
Wydawca
Rocznik
Tom
Strony
7--18
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
- Faculty of Energy and Environmental Engineering Silesian University of Technology
autor
- Institute of Energy and Fuel Processing Technology
autor
- Faculty of Energy and Environmental Engineering Silesian University of Technology
Bibliografia
- 1. GUS 2020. Zużycie energii w gospodarstwach domowych w 2018 r. https://stat.gov. pl/obszary-tematyczne/srodowisko-energia/energia/zuzycie-energii-w-gospodarstwach-domowych-w-2018-roku,2,4.html (accessed on 8 April 2022).
- 2. The Act of 14 December 2012 on waste, developed on the basis of Dz.U./Polish Journal of Laws 2022 item 699.
- 3. Muzyka R., Chrubasik M., Pogoda M., Tarnowska J., Sajdak M., Py–GC–MS and PCA analysis approach for the detection of illegal waste combustion processes in central heating furnaces, “Chromatographia” 2019, 82, 1101–1109, DOI: 10.1007/s10337-019- 03747-4.
- 4. Cieślik E., Fabiańska M.J., Preservation of geochemical markers during co-combustion of hard coal and various domestic waste materials, “Sci. Total Environ.” 2021, 768, 144638, DOI: 10.1016/j.scitotenv.2020.144638.
- 5. Besari W.A.A., Anggara F., Petrus H.T.B.M., Astuti W., Husnah W.A., Effect of power plant operating conditions on fly ash and bottom ash composition: A case study from power plant in Lampung, “IOP Conf. Ser. Earth Environ. Sci.” 2021, 851, 012039, DOI: 10.1088/1755-1315/851/1/012039.
- 6. Niranjan R., Thakur A.K., The toxicological mechanisms of environmental soot (black carbon) and carbon black: focus on oxidative stress and inflammatory path-ways, “Front Immunol.” 2017, 8, 763, DOI: 10.3389/fimmu.2017.00763
- 7. Edo M., Ortuño N., Persson P.-E., Conesa J.A., Jansson S., Emissions of toxic pollutants from co-combustion of demolition and construction wood and household waste fuel blends, “Chemosphere” 2018, 203, 506–513, DOI: 10.1016/j.chemosphere.2018.03.203.
- 8. Sánchez-Hervás J.M., Armesto L., Ruiz-Martínez E., Otero-Ruiz J., Pandelova M., Schramm K.W., PCDD/PCDF emissions from co-combustion of coal and PVC in a bubbling fluidised bed boiler, “Fuel” 2005, 84, 2149–2157, DOI: 10.1016/j.fuel.2005.07.009.
- 9. Pandelova M., Lenoir W., Schramm K.-W., Inhibition of PCDD/F and PCB formation in co-combustion, “J. Hazard. Mater.” 2007, 149, 615–618, DOI: 10.1016/j.jhazmat.2007.06.087.
- 10. Moreno A.I., Font R., Conesa J.A., Characterization of gaseous emissions and ashes from the combustion of furniture waste, “Waste Manag.” 2016, 58, 299–308, DOI: 10.1016/j.wasman.2016.09.046.
- 11. Lopes H., Proença S., Insights into PCDD/Fs and PAHs in biomass boilers envisaging risks of ash use as fertilizers, “Appl. Sci.” 2020, 10, 4951, DOI: 10.3390/app10144951.
- 12. Huang J., Opoku P.A., Guang L., Ke L., Norgbey E., A multi-emission analysis of organic and inorganic pollutants during the combustion of sludge with high and low calorific value coals, “Environ. Sci. Pollut. Res. Int.” 2021, 28, 65399–65409, DOI: 10.1007/ s11356-021-15301-7.
- 13. Poluszyńska J., The content of heavy metal ions in ash from waste incinerated in domestic furnaces “Arch. Environ. Prot.” 2020, 46, 68–73, DOI: 10.24425/aep.2020.133476.
- 14. Kicińska A., Caba G., Serwatka H., Ecological Risk Assessment Related to the Presence and Toxicity of Potentially Toxic Elements in Ashes from Household Furnaces, “Int. J. Environ. Res. Public Health” 2022, 19, 1770, DOI:10.3390/ijerph19031770.
- 15. Kováts N., Hubai K., Sainnokhoi T.-A., Eck-Varanka B., Hoffer A.,Tóth Á., Kakasi B., Teke G., Ecotoxic emissions generated by illegal burning of household waste, “Chemosphere” 2022, 298,134263, DOI: 10.1016/j.chemosphere.2022.134263.
- 16. Zhou H., Bhattarai R., Li Y., Si B., Dong X., Wang T., Yao Z., Towards sustainable coal industry: Turning coal bottom ash into wealth, “Sci. Total Environ.” 2022, 804, 149985, DOI: 10.3390/ijerph19031770.
- 17. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Municipal_waste_ statistics# Municipal_waste_generation (accessed on 8 April 2022).
- 18. Bruno M., Abis M., Kuchta K., Simon F.-G., Grönholm R., Hoppe M., Fiore S., Material flow, economic and environmental assessment of municipal solid waste incineration bottom ash recycling potential in Europe, “J. Clean. Prod.” 2021, 317, 128511, DOI: 10.1016/j.jclepro.2021.128511.
- 19. Ibrahim A.H., Keong C.K., Johari M.A.M., Rashid M.R.M., Ariffin K.S., Influence of coal bottom ash on properties of Portland cement mortar, “Int. J. Integr. Eng.” 2019, 11, 69–77, DOI: 10.30880/ijie.2019.11.02.008.
- 20. Mukhtar S., Kenimer A.L., Sadaka S.S., Mathis J.G., Evaluation of bottom ash and composted manure blends as a soil amendment material, “Bioresour. Technol.” 2003, 89, 217–228, DOI: 10.1016/s0960-8524(03)00085-3.
- 21. Muthusamy K., Rasid M.H., Jokhio G.A., Budiea A.M.A., Hussin M.W., Mirza J., Coal bottom ash as sand replacement in concrete: a review, “Constr. Build. Mater.” 2020, 236, 117507, DOI: 10.1016/j.conbuildmat.2019.117507.
- 22. Rathnayake M., Julnipitawong P., Tangtermsirikul S., Toochinda P.J., Utilization of coal fly ash and bottom ash as solid sorbents for sulphur dioxide reduction from coal fired power plant: life cycle assessment and applications, “J. Clean. Prod.” 2018, 202, 934–945, DOI: 10.1016/j.jclepro.2018.08.204.
- 23. Namkane K., Naksata W., Thiansem S., Sooksamiti P., Arqueropanyo MW., Utilization of coal bottom ash as raw material for production of ceramic floor tiles, “Environ. Earth Sci.” 2016, 75, 386, DOI: 10.1007/s12665-016-5279-0.
- 24. Czop M., Łaźniewska-Piekarczyk B., Use of slag from the combustion of solid municipal waste as a partial replacement of cement in mortar and concrete, “Materials” 2020, 13, 1593, DOI: 10.3390/ma13071593.
- 25. Nisbet I.C.T., LaGoy P.K., Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs), “Regul. Toxicol. Pharmacol.” 1992, 16, 290–300, DOI: 10.1016/0273-2300(92)90009-X.
- 26. Durant J.L., Busby Jr. W.F., Lafleur A.L., Penman B.W., Crespi C.L., Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols, “Mutat. Res.-Genet. Toxicol.” 1996, 371, 123–157, DOI: 10.1016/S0165-1218(96)90103-2.
- 27. Willett K.L., Gardinali P.R., Sericano J.L., Wade T.L., Safe S.H., Characterization of the H4IIE rat hepatoma cell bioassay for evaluation of environmental samples containing polynuclear aromatic hydrocarbons (PAHs), “Arch. Environ. Contam. Toxicol.” 1997, 32, 19442–448, DOI: 10.1007/s002449900211.
- 28. Rogula-Kozłowska W., Kozielska B., Klejnowski K., Concentration, origin and health hazard from fine particle-bound PAH at three characteristic sites in Southern Poland, “Bull. Environ. Contam. Toxicol.” 2013, 91, 349–355, DOI: 10.1007/s00128-013-1060-1.
- 29. Kozielska B., Polycyclic aromatic hydrocarbons contained in dusts polluting the environment, Monograph No. 571, 2015, Wyd. Pol. Śl. Gliwice 2015, ISBN 978-83-7880-312-6.
- 30. Lima A.L.C., Farrington J.W., Reddy C.M., Combustion-derived polycyclic aromatic hydrocarbons in the environment – A review, “Environ. Forensics” 2005, 6, 109–131, DOI: 10.1080/15275920590952739.
- 31. Czaplicka M., Cieślik E., Komosiński B., Rachwał T., Emission factors for biofuels and coal combustion in a domestic boiler of 18 kW, “Atmosphere” 2019, 10, 771, DOI: 10.3390/ATMOS10120771.
- 32. Křůmal K., Mikuška P., Horák J., Hopan F., Kuboňová L., Influence of boiler output and type on gaseous and particulate emissions from the combustion of coal for residential heating, “Chemosphere” 2021, 278, 130402, DOI: 10.1016/j.chemosphere.2021.130402.
- 33. Fabiańska M.J., Smółka-Danielowska W., Biomarker compounds in ash from coal combustion in domestic furnaces (Upper Silesia Coal Basin, Poland), “Fuel” 2012, 102, 333–344, DOI: 10.1016/j.fuel.2012.07.012.
- 34. Szatyłowicz E., Skoczko I., Evaluation of the PAH content in soot from solid fuels combustion in low power boilers, “Energies” 2019, 12, 4254. DOI: 10.3390/en12224254.
- 35. Fabiańska M., Kozielska B., Konieczyński J., Differences in the occurrence of polycyclic aromatic hydrocarbons and geochemical markers in the dust emitted from variou coal-fired boilers, “Energy Fuels” 2017, 31, 2585–2595, DOI: 10.1021/acs.energyfuels.6b03030.
- 36. del Rosario Sienra M., Rosazza N.G., Préndez M., Polycyclic aromatic hydrocarbons and their molecular diagnostic ratios in urban atmospheric respirable particulate matter, “Atmos. Res.” 2005, 75, 267–281, DOI: 10.1016/j.atmosres.2005.01.003.
- 37. Ravindra K., Sokhi R., Van Grieken R., Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. “Atmos. Environ.” 2008, 42, 2895– 2921. DOI: 10.1016/j.atmosenv.2007.12.01.
- 38. Kozielska B., Rogula-Kozłowska W., Klejnowski K., Seasonal variations in health hazards from polycyclic aromatic hydrocarbons bound to submicrometer particles at three characteristic sites in the heavily polluted Polish region, “Atmosphere” 2015, 6, 1–20, DOI:10.3390/atmos6010001.
- 39. Kozielska B. Health hazards from polycyclic aromatic hydrocarbons bound to submicrometer particles in Gliwice (Poland), “MATEC Web of Conf.” 2018, 47, 00034. DOI: 10.1051/matecconf/201824700034.
- 40. Kozielska B., Rogula-Kozłowska W., Rogula-Kopiec P., Jureczko I., Polycyclic aromatic hydrocarbons in various franctions of ambient particulate matter at areas dominated by traffic emission, “Ecol. Eng.” 2016, 49, 25–32, DOI: 10.12912/23920629/64512.
- 41. Kerimray A., Rojas-Solórzano L., Torkmahalleh M.A., Hopke P.K., Gallachóir B.P.Ó., Coal use for residential heating: patterns, health implications and lessons learned, “Energy Sustain. Dev.” 2017, 40, 19–30, DOI: 10.1016/j.esd.2017.05.005.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0110c11f-4502-477e-a280-463bf266e994