PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Response of methane emissions to water levels in simulated constructed wetlands

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wetland is an important natural source of methane (CH4) generated under the actions of methanogens in the anaerobic environment. A greenhouse experiment was conducted to quantify the response of methane emissions to water levels by simulating three water levels (10, 20, and 40 cm) in constructed wetlands and the methane was determined by the static chamber-gas chromatograph technique. Pearson correlation analysis showed that the emissions of CH4 were positively correlated with water temperature and air temperature while they were negatively correlated with air humidity. The water levels simulation experiment showed that the emission of CH4 was the highest when the water level was 20 cm and the CH4 concentrations of the water-air interface had different patterns at various water levels in the daytime. In conclusion, water level and temperature should be considered when accounting for greenhouse gas emissions in constructed wetlands as they both have important influences on CH4 emission.
Rocznik
Strony
5--12
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Environment Research Institute, Shandong University, Qingdao 266237, China
autor
  • Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China
autor
  • Environment Research Institute, Shandong University, Qingdao 266237, China
autor
  • Environment Research Institute, Shandong University, Qingdao 266237, China
Bibliografia
  • [1] GRUCA-ROKOSZ R., CZERWIENIEC E., TOMASZEK J.A., Methane emission from the Nielisz Reservoir, Environ. Prot. Eng., 2011, 37, 101–109.
  • [2] ALCANI M., DORRI A., MARAJ A., Estimation of energy recovery potential and environmental impact of Tirana landfill gas, Environ. Prot. Eng., 2018, 44, 117–128. DOI: 10.5277/epe.180308.
  • [3] SEGERS R., Methane production and methane consumption: A review of processes underlying wetland methane fluxes, Biogeochem., 1998, 41, 23–51. DOI: 10.1023/A:1005929032764.
  • [4] ZHU Q., PENG C., CHEN H., FANG X., LIU J., JIANG H., YANG Y., YANG G., Estimating global natural wetland methane emissions using process modelling: Spatio-temporal patterns and contributions to atmospheric methane fluctuations, Glob. Ecol. Biogeogr., 2015, 24, 959–972. DOI: 10.1111/geb.12307.
  • [5] NISBET E.G., DLUGOKENCKY E.J., BOUSQUET P., Methane on the Rise-Again, Sci., 2014, 343, 493–495. DOI: 10.1126/science.1247828.
  • [6] XU G., LI Y., WANG S., KONG F., YU Z., An overview of methane emissions in constructed wetlands: how do plants influence methane flux during the wastewater treatment?, J. Freshw. Ecol., 2019, 34, 333–350. DOI: 10.1080/02705060.2019.1588176.
  • [7] PHILIPPOT L., HALLIN S., BÖRJESSON G., BAGGS E.M., Biochemical cycling in the rhizosphere having an impact on global change, Plant Soil, 2009, 321, 61–81. DOI: 10.1007/s11104-008-9796-9.
  • [8] KIM D.G., VARGAS R., BOND-LAMBERTY B., TURETSKY M.R., Effects of soil rewetting and thawing on soil gas fluxes: A review of current literature and suggestions for future research, Biogeosci., 2012, 9, 2459–2483. DOI: 10.5194/bg-9-2459-2012.
  • [9] WHALEN S.C., Biogeochemistry of methane exchange between natural wetlands and the atmosphere, Environ. Eng. Sci., 2005, 22, 73–94. DOI: 10.1089/ees.2005.22.73.
  • [10] TURETSKY M.R., KOTOWSKA A., BUBIER J., DISE N.B., CRILL P., HORNIBROOK E.R.C., MINKKINEN K., MOORE T., MYERS-SMITH I.H., NYKÄNEN H., OLEFELDT D., RINNE J., SAARNIO S., SHURPALI N., TUITTILA E., WADDINGTON J.M., WHITE J.R., WICKLAND K.P., WILMKING M., A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands, Glob. Chang. Biol., 2014, 20, 2183 –2197. DOI: 10.1111/gcb.12580.
  • [11] KETTUNEN A., Connecting methane fluxes to vegetation cover and water table fluctuations at microsite level: A modeling study, Global Biogeochem. Cycl., 2003, 17, 1051. DOI: 10.1029/2002GB001958.
  • [12] SWAMY Y.V., NIKHIL G.N., VENKANNA R., DAS S.N., ROY CHAUDHURY G., Emission of methane and nitrous oxide from Vigna mungo and Vigna radiata legumes in India during the dry cropping seasons, Atm., 2011, 25, 107–120.
  • [13] CHOWDHURY T.R., DICK R.P., Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands, Appl. Soil Ecol., 2013, 65, 8–22. DOI: 10.1016/j.apsoil.2012.12.014.
  • [14] KLUDZE H., DELAUNE R.D., Gaseous exchange and wetland plant response to soil redox intensity and capacity, Soil Sci. Soc. Am. J., 1995, 59, 939–945. DOI: 10.2136/sssaj1995.03615995005900030045x.
  • [15] TONG C., WANG W.Q., ZENG C.S., MARRS R., Methane (CH4) emission from a tidal marsh in the Min River estuary, southeast China, J. Environ. Sci. Health, Part A. Toxic/Hazard. Subst. Environ. Eng., 2010, 45, 506–516. DOI: 10.1080/10934520903542261
  • [16] XING Y., XIE P., YANG H., NI L., WANG Y., RONG K., Methane and carbon dioxide fluxes from a shallow hypereutrophic subtropical Lake in China, Atmos. Environ., 2005, 39, 5532–5540. DOI: 10.1016/j.atmosenv.2005.06.010.
  • [17] TOKIDA T., MIYAZAKI T., MIZOGUCHI M., NAGATA O., TAKAKAI F., KAGEMOTO A., HATANO R., Falling atmospheric pressure as a trigger for methane ebullition from peatland, Global Biogeochem. Cycles, 2007, 21, GB2003. DOI: 10.1029/2006GB002790.
  • [18] STRACK M., WADDINGTON J.M., TUITTILA E.S., Effect of water table drawdown on northern peatland methane dynamics: Implications for climate change, Global Biogeochem. Cycles, 2004, 18, 1–7. DOI: 10.1029/2003GB002209.
  • [19] HUSSAIN S., PENG S., FAHAD S., KHALIQ A., HUANG J., CUI K., NIE L., Rice management interventions to mitigate greenhouse gas emissions. A review, Environ. Sci. Pollut. Res., 2015, 22, 3342–3360. DOI: 10.1007/s11356-014-3760-4.
  • [20] STAMP I., BAIRD A.J., HEPPELL C.M., The importance of ebullition as a mechanism of methane (CH4) loss to the atmosphere in a northern peatland, Geophys. Res. Lett., 2013, 40, 2087–2090. DOI: 10.1002/grl.50501.
  • [21] GLISSMANN K., CHIN K.J., CASPER P., CONRAD R., Methanogenic pathway and archaeal community structure in the sediment of eutrophic Lake Dagow. Effect of temperature, Microb. Ecol., 2004, 48, 389–399. DOI: 10.1007/s00248-003-2027-2.
  • [22] DUAN X.N., WANG X.K., OUYANG Z.Y., Effects of vascular plants on methane emissions from natural wetlands, Acta Ecol. Sin., 2005, 25, 3375–3382. DOI: 1000-0933(2005)12-3375-08.
  • [23] LAANBROEK H.J., Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review, Ann. Bot., 2010, 105, 141–153. DOI: 10.1093/aob/mcp201.
  • [24] DING W., CAI Z., TSURUTA H., LI X., Effect of standing water depth on methane emissions from freshwater marshes in northeast China, Atmos. Environ., 2002, 36, 5149–5157. DOI: 10.1016/S1352-2310(02)00647-7.
  • [25] CICERONE R.J., SHETTER J.D., Sources of atmospheric methane. Measurements in rice paddies and a discussion, J. Geophys. Res., 1981, 86, 7203–7209. DOI: 10.1029/JC086iC08p07203.
  • [26] ZHENG X., WANG M., WANG Y., CH4 and N2O emissions from rice paddy fields in southeast China, Sci. Atmos. Sin., 1997, 21, 231–237.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0016e1d8-8806-4ca4-8015-aaf2851668a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.