Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Czasopisma help
Lata help
Autorzy help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 55

Liczba wyników na stronie
first rewind previous Strona / 3 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  interfejs mózg-komputer
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 3 next fast forward last
PL
Interfejs mózg-komputer to system pozwalający na bezpośrednią komunikację pomiędzy mózgiem a urządzeniem zewnętrznym. Każda aktywność mózgu przejawia się w postaci pojawiającego się w nim potencjału elektrycznego. Jego pomiar możliwy jest za pomocą elektroencefalografu wyposażonego w elektrody zamontowane na powierzchni czaszki. Jest to rozwiązanie najczęściej obecnie stosowane w interfejsach mózg-komputer. Poza prezentacją aktualnego stanu wiedzy, celem niniejszej pracy jest prezentacja prostego interfejsu mózg-komputer. W tym rozwiązaniu sygnał z powierzchni czaszki jest mierzony za pomocą jednoelektrodowego urządzenia MindWave firmy NeuroSky, a następnie bezprzewodowo przekazywany do układu Arduino. Układ Arduino, na podstawie otrzymanego sygnału, steruje jeżdżącą platformą. U użytkownika skupiającego uwagę (np. na wspomnianej platformie) w sygnale pomierzonym z powierzchni czaszki, pojawiają się tzw. fale beta. Na podstawie wartości ich amplitudy (czyli przekroczenia określonego progu), układ Arduino decyduje o ewentualnym ruchu platformy.
EN
The brain-computer interface makes possible to do the direct connection between brain and an external device. Every brain activity causes a rise in electrical potential. Measurement of that potential is possible by electrodes mounted on the surface of the skull. This method is the most popular and is called electroencephalography. This article presents brain-computer interface technology overview and its simple implementation. In this implementation, signal is measured by one-electrode device MindWave from NeuroSky, and then it is wirelessly transmitted to Arduino board. Microcontroller controls the mobile platform based on the received signal. When the user is focusing his attention, for example, on a mobile platform, it is possible to measure the beta waves from the surface of the skull. If the threshold value is exceeded, Arduino moves of the mobile platform.
PL
Artykuł omawia możliwość realizacji funkcjonalnego interfejsu mózgkomputer z wykorzystaniem urządzenia Emotiv Epoc. Interfejsy mózg-komputer są systemami wykorzystującymi pomiary aktywności neuronalnej użytkownika do generacji sygnałów sterujących dla maszyn. Technologia ta ma zastosowanie przede wszystkim u pacjentów dotkniętych paraliżem. Badania nad interfejsami mózg-komputer przez długi czas prowadzone były jedynie przez wybrane zespoły specjalistów, mające dostęp do odpowiednich przyrządów pomiarowych. W niekrytycznych zastosowaniach można jednak wykorzystać urządzenia zdecydowanie tańsze, nawet pomimo ich niższej jakości. Przykładem takiego urządzenia jest Emotiv Epoc – kontroler do gier wideo i elektroencefalograf w jednym. W artykule oszacowano możliwość realizacji kilku popularnych rodzajów interfejsów wykorzystujących elektroencefalografię. Opisano ponadto pozytywne wyniki realizacji wybranego typu interfejsu: P300 Speller.
EN
The article aims to examine the feasibility of using Emotiv Epoc to implement a functional brain-computer interface. Brain-computer interfaces constitute a class of systems capable of converting user’s brain activity measurements into control signals for machines. This technology is predominantly used to assist patients suffering from various forms of paralyze. For many years brain-computer interface research had only been conducted by specialized teams, able to afford necessary equipment. In non-critical applications it is however now possible to take advantage of easily available and way more affordable devices, despite their lower quality. Emotiv Epoc is an example of such device, being both a video game controller and an electroencephalograph in the same time. The article estimates the feasibility of implementing several most popular EEG-based interfaces with Emotiv Epoc. The article further provides some promising results obtained for a particular, chosen type of interface: the P300 Speller.
PL
Elektryczna aktywność mózgu to między innymi potencjały wywołane, które są mierzalne na powierzchni głowy w wyniku zarejestrowania przez człowieka zewnętrznego bodźca (np. obrazu, dźwięku). Są one wykorzystywane zwykle w diagnostyce medycznej, ale trwają także intensywne prace nad wykorzystaniem ich w tak zwanych interfejsach mózg-komputer. W artykule opisano stanowisko laboratoryjne do pomiaru i analizy potencjałów wywołanych, utworzone na bazie oprogramowania MATLAB. Do akwizycji sygnału z powierzchni czaszki wykorzystano elektroencefalograf (EEG). Ponadto stanowisko jest wyposażone w fotostymulator, zbudowany z szesnastu diod LED i mikrokontrolera ATmega 328. Przygotowane oprogramowanie pozwala na: ustanowienie połączenia pomiędzy EEG, fotostymulatorem oraz komputerem, sterowanie bodźcami (w zależności od oczekiwanego potencjału wywołanego), filtrację zebranego sygnału i jego klasyfikację za pomocą algorytmów statystycznego uczenia maszynowego. Stanowisko wspomaga projektowanie prostych interfejsów-mózg komputer.
EN
One type of brain's electrical activity are evoked potentials. They appear on the scalp as a result of a registration of an external stimulus (e.g. an appearance or a change of a sound, a flashing light or an image). Generally they are used in medical diagnosis, but they are also used in brain computer-interfaces. In this article laboratory stand for acquisition and analysis of evoked potentials is described. One of the main part of this stand is a stimulator (consisting of sixteen LEDs and a microcontroller ATmega 328). The software created by the authors allows: connection between EEG device, stimulator and computer, stimulus control, signal filtering and its classification. The presented laboratory stand may support brain-computer interface design process.
PL
Artykuł przedstawia problematykę modelowania populacyjnego w celu odzwierciedlenia frakcji komórek piramidalnych i interneuronów w pamięci komputera. Na bazie aktywności powyższych frakcji, poddawany procesowi akwizycji jest sygnał elektroencefalograficzny. Proces modelowania złożonych struktur mózgowych może okazać się niezmiernie pomocny podczas konstruowania interfejsów mózg-komputer, ze względu na wnioski płynące z predykcji zachowań poszczególnych składowych sygnału EEG.
PL
Głównym celem artykułu jest porównanie skuteczności klasyfikacji cech dwóch algorytmów klasyfikujących wykorzystywanych w interfejsach mózg-komputer: SVM (ang. Support Vector Machine, Maszyna Wektorów Nośnych) oraz LDA (ang. Linear Discriminant Analysis, Liniowa Analiza Dyskryminacyjna). W artykule przedstawiono interfejs, w którym użytkownikowi prezentowane są dwa bodźce migające z różną częstotliwością (10 i 15 Hz), a następnie za pomocą elektrod elektroencefalografu mierzona jest odpowiedź elektryczna mózgu. W takich interfejsach sygnał zbierany jest zwykle w okolicach potylicznych (nad korą wzrokową). W prezentowanym rozwiązaniu sygnał mierzony jest z okolic czołowych. W przetwarzaniu i analizie sygnału zastosowano algorytmy statystycznego uczenia maszynowego. Do ekstrakcji cech sygnału wykorzystano Szybką Transformatę Fouriera, do selekcji cech: test t-Welcha, a do klasyfikacji cech: SVM oraz DLA. Na podstawie odpowiedzi uzyskanej z klasyfikatora możliwe jest np. wysterowanie kierunku skrętu robota mobilnego lub włączenie czy wyłączenie oświetlenia.
EN
The main aim of this article is to compare the effectiveness of the classification of the two classifiers used in brain-computer interfaces: SVM (Support Vector Machine) and LDA (Linear Discriminant Analysis). The article presents an interface in which the subject is presented the two stimuli flashing at different frequencies (10 and 15 Hz) and then by using EEG electrodes electrical response of the brain is measured. In these interfaces, the signal is typically collected in the occipital area (on the visual cortex). In the presented solution the signal is measured form the prefrontal cortex. For signal processing and analysis statistical machine learning algorithms were used. For features’ extraction Fast Fourier Transform was used. For features’ selection Welch’s t test was used. For features’ classification was used SVM and DLA. Based on the responses obtained from the classifier it is possible to control the direction of a mobile robot’s movement or turning the lights on and off.
6
Content available Interfejsy mózg-komputer – krótka historia
75%
PL
Nie tak dawno temu, interfejsy mózg-komputer były jedynie domeną powieści science-fiction. Obecnie dla wielu osób niepełnosprawnych ruchowo, interfejsy mózg-komputer stają się powoli nadzieją na przywrócenie lub kompensacje utraconych funkcji. Niezależnie od branży medycznej, interfejsy mózg-komputer stanową również bardzo interesujący temat dla firm działających w branży rozrywkowej czy mediach społecznościowych. W artykule zostały przedstawione najpopularniejsze techniki odczytywania aktywności mózgu wykorzystywane w interfejsach mózg-komputer. Przedstawiono również przykłady najnowszych prac prowadzonych w tej dziedzinie.
EN
Not so long ago, brain-computer interfaces were only the domain of science fiction novels. Currently, for many people with motor disabilities, brain-computer interfaces are slowly becoming a hope for restoring or compensating for lost functions. Regardless of the medical industry, brain-computer interfaces are also a very interesting topic for companies operating in the entertainment and social media industry. The article presents the most popular brain activity reading techniques used in brain computer interfaces. Examples of recent work in this field are also presented.
7
Content available remote Extracting multiple commands from a single SSVEP flicker using eye-accommodation
75%
EN
The steady-state visually evoked potential (SSVEP) based brain-computer interfaces (BCIs) generally deploy flickering stimuli with different frequencies in order to generate different commands. This paper presents a setup that can be used to generate multiple commands from a single flickering stimulus using magnitude modulation of SSVEP through eye-accommodation. In this setup, a flickering stimulus was shown on the computer screen and a passive fixation target was placed between the screen and the subject. The eye-accommodation mechanism to focus on the target between the screen and the subject, caused the flickering stimulus to become blurred which reduced the magnitude of the evoked SSVEP response. The reduced magnitude SSVEP response can be used to generate another command over the command generated when the subject focuses directly on the stimulus. The fixation target was placed at 3 different positions that can provide up to 4 commands from the single flicker stimulus. Fifteen healthy human subjects participated in the experiments. The mean offline accuracies obtained for 2-class, 3-class, and 4-class extraction were 100%, 94.2 ± 6.1%, and 80.9 ± 9.7% respectively for a 4-seconds time window.
8
Content available Brain-computer interface for mobile devices
75%
EN
The article presents the results of research in controlling the mobile application with the EEG signals and eye blinking. Authors proposed a prototype solution of a brain-computer interface that can be used by people with total motor impairment to control chosen mobile application on their mobile phone. There was a NeuroSky MindWave Mobile device used during experiments. Two software tools for mobile devices were specially implemented. First one helps to analyse the EEG signals and recognize eye blinks, second one - interprets them and executes assigned actions. Different configurations of settings were used during the studies. They included: single blink or double blink, level of focus, period of focus. Experiments results show that a man equipped with a personal EEG sensor and eye blinking detector can remotely touchless use mobile applications installed on smartphones or tablets.
EN
The main objective of this paper is to carry out a research on the analysis of the use of brain-computer interface in everyday life. The article presents the method of recording brain activity, electroencephalography, which was used in the study. The brain activity used in the brain-computer interface and the general principle of brain-computer interface design are also described. The performed study allowed to develop an analysis of the obtained results in the matter of evaluating the usability of brain-computer interfaces using motor imagery. As a result of the process of analyzing the results obtained during the research, it was found that each subsequent experiment allowed for obtaining more favourable results than the previous one. The reason for this was the use of an additional training session for the next test person. In the final stage, it was possible to evaluate the usability of the brain-computer interface in everyday life
PL
Głównym celem artykułu jest przeprowadzenie badania nad analizą wykorzystania interfejsu mózg-komputer w życiu codziennym. W artykule przedstawiono metodę rejestrowania aktywności mózgu, elektroencefalografię, która została wykorzystana w badaniu. Opisano również aktywność mózgu wykorzystywaną w interfejsie mózg-komputer oraz ogólną zasadę projektowania interfejsu mózg-komputer. Przeprowadzone badanie pozwoliło na opracowanie analizy uzyskanych wyników w zakresie oceny użyteczności interfejsów mózg-komputer z wykorzystaniem obrazowania motorycznego. W wyniku procesu analizy wyników uzyskanych podczas przeprowadzania badań ustalono, iż każdy następnie zrealizowany eksperyment pozwalał na uzyskanie korzystniejszych wyników od poprzedniego. Powodem tego było zastosowanie dodatkowej sesji treningowej dla kolejnych badanych osób. W końcowym etapie można było ocenić przydatność interfejsu mózg-komputer w życiu codziennym
EN
To investigate the optimal filter settings for pre-processing of Movement Related Cortical Potentials (MRCP) for the detection through EEG in single trial, we have proposed a novel Non-Linear Optimized Spatial Filter (NL-SF) and compared it to the Optimized Spatial Filtering (OSF) used in literature. MRCPs from EEG recordings are emphasized, calculating the optimal non-linear combination of channels which isolates the signal of interest. The method is applied to EEG data recorded from 16 healthy patients either executing or imagining 50 self-paced upper limb movements (palmar grasp). MRCPs have been identified from the outputs of the two filters by matching with a template built by averaging responses to movement intentions in the training set. NL-SF had a median accuracy on the overall dataset of 84.6%, which is significantly better than that of OSF (i.e., 76.9%). Being a filter and feasible for self-paced applications, it could be of interest in online BCI system design.
EN
The paper is dedicated to parameter adjustment and performance analysis of the brain-computer interface based on P300 paradigm. The aim of the paper is to present the construction of the brain-computer interface and the study of optimal parameter selection as well as the data analysis process. The BCI with different parameters was run and tested under the case study. The aim of the study was to find the most suitable parameter of P300-based BCI.
PL
Artykuł poświęcony jest dostosowaniu parametrów oraz analizie wydajności interfejsu mózg-komputer opartego na paradygmacie P300. Opisano konstrukcję interfejsu oraz proces doboru jego parametrów, a także cały proces analizy. Interfejs BCI z różnymi zestawami parametrów został uruchomiony i przetestowany. Przedstawiono studium przypadku poświęcone analizie danych oraz analizie wydajnościowej danych pochodzących z interfejsu BCI.
12
Content available remote Sterowanie modelem pojazdu za pomocą interfejsu mózg-komputer
75%
PL
Celem pracy było zbudowanie układu sterowania prostym modelem pojazdu za pomocą interfejsu mózg-komputer (ang. brain computer interface - BCI). Omówiono zasadę działania BCI oraz wykorzystanie BCI w mechatronice, w tym na potrzeby interdyscyplinarnych badań kognitywistycznych (nauk o poznaniu). W dalszej części pracy Autorzy skupili się na opisie modelu, który posłużył do przeprowadzenia badania, ze szczególny uwzględnieniem współdziałania BCI oraz Arduino. Czwarta część pracy dotyczy badania działania zbudowanego rozwiązania technicznego przeprowadzonego na grupie osób w wieku 8-54 lat.
EN
This artilce aims at consctruction of the brain-computer interface (BCI) - based control system of the car model. Article decribes BCI's rules of operation and BCI applications in mechatronics, including interdisciplinary cognitive sciences. Further part of the article is focused on description of the model used in the research, particularly on BCI-Arduino cooperation. The last part of the article shows research on subjects aged 8-54 years concerning BCI use to control car model..
EN
Brain–computer interfaces based on steady-state visual evoked potentials have recently gained increasing attention due to high performance and minimal user training. Stimulus frequencies in the range of 4–60 Hz have been used in these systems. However, eye fatigue when looking at low-frequency flickering lights, higher risk of induced epileptic seizure for medium-frequency flickers, and low signal amplitude for high-frequency flickers complicate appropriate selection of flickering frequencies. Here, different flicker frequencies were evaluated for development of a brain–computer interface speller that ensures user's comfort as well as the system's efficiency. A frequency detection algorithm was also proposed based on Least Absolute Shrinkage and Selection Operator estimate that provides excellent accuracy using only a single channel of EEG. After evaluation of the SSVEP responses in the range of 6–60 Hz, three stimulus frequency sets of 30–35, 35–40 and 40–45 Hz were adopted and the system's performance and corresponding eye fatigue were compared. While the accuracy of the asynchronous speller for all three stimulus frequency sets was close to the maximum (average 97.6%), repeated measures ANOVA demonstrated that the typing speed for 30–35 Hz (8.09 char/min) and 35–40 Hz (8.33 char/min) are not significantly different, but are significantly higher than for 40–45 Hz (6.28 char/min). On the other hand, the average eye fatigue scale for 35–40 Hz (80%) is comparable to that for 40–45 Hz (85%), but very higher than for 30–35 Hz (60%). Therefore, 35–40 Hz range was proposed for the system which resulted in 99.2% accuracy and 67.1 bit/min information transfer rate.
14
Content available remote Interfejsy mózg-komputer w sterowaniu urządzeniami i systemami mechatronicznymi
75%
PL
Interfejsy mózg-komputer ustanowiły przełom w rozwoju współczesnych neuronauk i neurorehabilitacji. Niniejszy artykuł stanowi przegląd części technologii interfejsów mózg-komputer ukierunkowanej na sterowanie urządzeniami i systemami mechatronicznymi. Opisane zostały zarówno podstawowe rozwiązania z obszaru samych interfejsów, jak i przedyskutowane technologie mogące zapewnić sygnały sterujące dla urządzeń mechatronicznych. Pomimo ciągłego rozwoju problematyki wiele kwestii jest nierozwiązanych w zakresie udoskonalenia samych interfejsów oraz sklasyfikowania sygnałów sterujących
EN
Brain-computer interfaces (BCIs) have begun to constitute the another breakthrough in contemporary neuroscience and neurorehabilitation. This paper provides an overview of brain-computer interfaces (BCIs) technology that aims to address the priorities for control of mechatronic devices and systems. We describe basic solutions in the area of BCIs and discuss technologies that may provide command signals for mechatronic devices. Despite continuous development of the topic there still remains room for improvement, including future interfaces and control signal classification enhancements.
15
Content available remote Algorytm kompresji danych dla interfejsu mózg-komputer
75%
PL
Przedstawiony algorytm kompresji danych dla interfejsu mózg-komputer (BMI) pozwala na kodowanie sygnałów neuronowych z przepływnością ok. 0.25 bita na próbkę, przy zniekształceniach mniejszych jak 3% rms. Dzięki redukcji transmitowanych danych kompletny, wielokanałowy system BMI wraz z układem telemetrii i anteną magnetyczną może być implantowany w całości pod skórą badanego zwierzęcia. Pełna podskórna implantacja redukuje prawdopodobieństwo rozwoju infekcji i umożliwia obserwację zwierzęcia w jego naturalnym środowisku.
EN
Presented data compression algorithm dedicated to Brain-Machine Interface (BMI) system enables encoding of neural signals at data rate of 0.25 bits per sample with distortions below 3% rms. Reduction of transmitted data enables implantation of complete, multichannel BMI system along with telemetry unit and magnetic antenna. Full implantation of BMI system is essential for minimization risk of developing infections and enabling the animal to interact freely with the environment.
16
Content available remote Komputery i co dalej?
75%
PL
Trwający proces przechodzenia do społeczeństwa informacyjnego, a w tym edukacja, powinien być wspomagany nowoczesnymi narzędziami informatycznymi. Takim narzędziem niewątpli-wie mogą stać się platformy edukacyjne z biologicznym sprzężeniem zwrotnym, a w szczególności z neuronowym sprzężeniem zwrotnym. Artykuł prezentuje zagadnienia dotyczące zastosowania interfejsu mózg – komputer do współpracy z aplikacją edukacyjną. Celem artykułu jest projekt i prezentacja zestawu sprzętowego realizującego praktycznie platformę edukacyjną z dodatnim biologicznym sprzężeniem zwrotnym. W badaniach, jako interfejs mózg – komputer, wykorzystywany jest 2-kanałowy elektroencefalograf (EEG) z elektrodami suchymi. Artykuł szczegółowo opisuje konfigurację sprzętową zestawu badawczego. Przedstawione są wymagania dotyczące zasad eksploatacji takiego zestawu w warunkach placówek dydaktycznych i edukacyjnych w kontekście minimalizacji artefaktów. Prowadzone badania mają na celu sprawdzenie efektywności procesu nauczania z wykorzystaniem efektu dodatniego sprzężenia zwrotnego uzyskiwanego na poziomie pomiaru czynności kory mózgowej.
EN
The ongoing transformation processes to the information society, including particularly education, should be supported by modern IT tools. Educational platforms of biological feedback, especially neurofeedback, constitute such a tool. The article presents issues concerning the application of brain-computer interface to work with the educational application. The purpose of this article is the design and presentation of a set of hardware performing edu-cational platform with a positive biological feedback. A 2-channel electroencephalograph (EEG) with dry electrodes is used as a brain-computer interface in these studies. The article describes in detail, a configuration of research equipment. Are presented the requirements for the operation of such a system in terms of teaching and educational institutions in the context of minimizing artifacts. These research aims to test the effectiveness of the learning process using the positive feedback effect obtained by measuring the activity of the cerebral cortex.
PL
W artykule przedstawiono wykorzystanie maszyny wektorów wspierających (SVM) na użytek interfejsów mózg-komputer (BCI). W opracowanych algorytmach jako cechy sygnału EEG wykorzystano jego wariancję. Przedstawiono wyniki badań związanych z wykorzystaniem sieci SVM jako klasyfikatora. Eksperymenty przeprowadzono przy użyciu różnego rodzaju funkcji jądra.
EN
Implementing communication between man and machine by use of EEG signals is one of the biggest challenges in the signal theory. Such communication could improve the standard of living of people with severe motor disabilities. Some disable persons cannot move, however they can think about moving their arms, legs and this way produce stable motor-related EEG signals. These signals can be used to construct BCI systems. However, the proper interpretation of the EEG signals is a very difficult task. There are three main stages in EEG signal analysis: feature extraction, feature selection and classification. The main aim of the paper is to implement a support vector machine as a classifier for the brain-computer interface. The proposed algorithm uses the EEG signal variance in the frequency range 8-30Hz. Experiments were conducted with use of different kernel functions for the SVM classifier. The best results were achieved for the quadratic polynomial kernel function. The classification error for testing data was 0.13.
PL
Celem opracowania jest zwięzłe opisanie zasad działania interfejsu mózg–komputer i przedstawienie jego możliwych zastosowań technicznych. Jest to współcześnie intensywnie rozwijany system mechatroniczny mierzący aktywność mózgu i generujący na jej podstawie sygnały sterujące dla urządzeń i maszyn. W artykule zawarto podstawowe informacje na temat ludzkiego mózgu, metod pomiaru jego aktywności, przetwarzania i klasyfikacji sygnałów. Przedstawiono różne możliwości realizacji interfejsu i jego zastosowania techniczne.
EN
The aim of this paper is to briefly describe principles of brain–computer interface and presentation of its possible technical applications. At this point in time is in mechatronics an intensively developing system, that measures brain activity and on this basis generates control signals for devices or machines. This article contains basic information about the human brain, its activity and measurement methods, processing and classification of signals. Different abilities were presented to the realization of the interface and using it technical.
PL
W artykule przedstawiono nowoczesną metodę komunikacji między człowiekiem a maszyną, w której wykorzystane są potencjały mózgowe – interfejs mózg–komputer. Opisano rozwój i właściwości metod komunikowania ludzkiego mózgu z urządzeniami i maszynami. Zaprezentowano projekt interfejsu, jakiego użyto do sterowania ruchem robota mobilnego. Aplikacja wykorzystuje elektroencefalografię, rolę sensora pełni komercyjny kask z suchymi elektrodami, umożliwiający pomiar poziomu pobudzenia i relaksu.
EN
The paper presents modern method of communication between human and a machine, using brain potentials – brain–computer interface. A development and properties of methods of human brain announcing with devices and machines were described. The project of interface used to control mobile robot was developed. Application was based on electroencephalography, dry headset enabling attention and relax level measuring was used as a sensor.
first rewind previous Strona / 3 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.