Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  MITOCHONDRIAL DNA
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The growing interest in mitochondrial DNA (mtDNA) analysis is due to its inheritance manner, circular DNA stability, high copy number per cell and mutational rate. These features give possibility to study mtDNA isolated from modern humans as well as from ancient samples. What is more, analysis of mtDNA from present populations enables to conclude about their history. Mitochondrial DNA variation level indicates, if for example, demic expansion structured today genetic composition. Thanks to modern mtDNA analysis migrations direction and other demographic events can be dated back without problematic extraction and analysis of ancient DNA. Not only the existence of well defined, continental specific mtDNA clades was shown, but also group specific lineages were revealed. Molecular methods enabled discrimination between related mtDNAs and detailed phylogenetic tree of female lineages was drawn. Analysis of mtDNA supported a hypothesis about modern Homo sapiens origin in Africa, and led light on migratory routes in Asia, Europe and the Americas.
EN
. There are many theories of aging and a number of them encompass the role of mitochondria in this process. Mitochondrial DNA mutations and deletions have been shown to accumulate in many tissues in mammals during aging. However, there is little evidence that these mutations could affect the functioning of aging tissues.
EN
Mitochondrial genetic system, comprising genome, transcription and translation processes play essential role in the function of mitochondria and thus for the survival of plants. The pathway from the genetic information encoded in the DNA to the functional protein leads through a very diverse RNA world. In this article, the current results obtained in the examination of plant mitochondrial transcription are described. Recent developments in the characterisation of promoter structure are presented.
EN
Nucleotide sequence polymorphism in a 641-bp novel major noncoding region of mitochondrial DNA (mtDNA-NC) of the Pacific oyster Crassostrea gigas was analysed for 29 cultured individuals within the Goseong population. A total of 30 variable sites were detected, and the relative frequency of nucleotide alteration was determined to be 4.68. Alterations were mostly single nucleotide substitutions. Transition, transversion, both transition and transversion, and both transversion and nucleotide deletion were observed at 18, 9, 2 and 1 sites, respectively. Among 29 specimens, 22 haplotypes were identified, and pairwise genetic diversity of haplotypes was calculated to be 0.988 from multiple sequence substitutions using the two-parameter model. A phylogenetic tree, obtained for haplotypes by the neighbor-joining method, showed a single cluster of linkages. The cluster comprised 11 haplotypes associating with 14 specimens, while the other 11 haplotypes associating with 15 specimens were scattered. This mtDNA-NC presenting a high nucleotide sequence polymorphism is a potential mtDNA control region. It therefore can serve as a genetic marker for intraspecies phylogenetic analysis of the Pacific oyster and is more useful than the less polymorphic mtDNA coding genes.
EN
Nucleotide sequence divergence in a novel major mitochondrial DNA intergenic spacer (IGS) of Pacific oyster Crassostrea gigas was analyzed for 29 cultured individuals within the Goseong population (Korea). A total of 7 variable sites were detected within the IGS, and the relative frequency of nucleotide alteration was determined to be 1.16%. All alterations were due to a single nucleotide substitution, and 5 transitions and 2 transversions were observed. Among 29 specimens, only 8 haplotypes could be identified, and 6 of the haplotypes were unique to particular specimens. Pairwise genetic diversity of all 8 haplotypes was calculated to be 0.412 ? 0.134 from multiple sequence substitutions based on the two-parameter model. The phylogenetic tree obtained for these haplotypes according to the neighbor-joining method illustrated a single cluster of linkages, which comprised 5 haplotypes associated with 23 specimens, while the other 3 haplotypes associated with 6 specimens were scattered. The results indicate that the IGS is higher polymorphic and thus more suitable as a genetic marker for population structure analysis of Pacific oyster than the mtDNA coding regions, such as cytochrome c oxidase I and 16S ribosomal RNA genes.
EN
The Lithuanians and Latvians are the only two Baltic cultures that survived until today. Since the Neolithic period the native inhabitants of the present-day Lithuanian territory have not been replaced by any other ethnic group. Therefore the genetic characterization of the present-day Lithuanians may shed some light on the early history of the Balts. We have analysed 120 DNA samples from two Lithuanian ethnolinguistic groups (Aukstaiciai and Zemaiciai) by direct sequencing of the first hypervariable segment (HVI) of the control region of mitochondrial DNA (mtDNA) and restriction enzyme digestion for polymorphic site 00073. On the basis of specific nucleotide substitutions the obtained sequences were classified to mtDNA haplogroups. This revealed the presence of almost all European haplogroups (except X) in the Lithuanian sample, including those that expanded through Europe in the Palaeolithic and those whose expansion occurred during the Neolithic. Molecular diversity indices (gene diversity 0.97, nucleotide diversity 0.012 and mean number of pairwise differences 4.5) were within the range usually reported in European populations. No significant differences between Aukstaiciai and Zemaiciai subgroups were found, but some slight differences need further investigation.
EN
In the patients with mitochondrial cardiomyopathy, fragmentation and oxidative damage in mtDNA was documented at their age 7 to 19 equivalent to the normal subjects of age over 80.Exposure of a cultured cell line under oxygen stress, 95% oxygen, cold mimic these changes in mtDNA 1within 3 days leading as apoptotic cell death, whereas mtDNA lacking cells are relatively immune.These facts support the 'redox mechanism of agening'.
EN
Quantitative analysis of mitochondrial DNA (mtDNA) is crucial for proper diagnosis of diseases that are caused by or associated with mtDNA depletion. However, such a quantitative characterization of mtDNA is not a simple procedure and requires several laboratory steps at which potential errors can accumulate. Here, we describe a modified procedure for quantitative human mtDNA analysis. The procedure is based on using two PCR-amplified, fluorescein-labeled DNA probes, complementary to mtDNA (detection probe) and chromosomal 18S rDNA (reference probe), both of similar length. Thus, equal amounts of these probes can be used and, contrary to previously published procedures, no mtDNA purification (apart from total DNA isolation) or 18S rDNA cloning is necessary for probe preparation. Two separate hybridizations (each with one probe) are suggested instead of one hybridization with both probes; this decreases background signals and enables adjustment of the strength of specific signals from both probes, which is useful in the subsequent densitometric analysis after superimposing of both pictures. Using different DNA amounts for reactions, we have proved that the procedure is quantitative in a broad range of sample DNA concentrations. Moreover, we were able to detect mtDNA depletion unambiguously in tissue samples from patients suffering from diseases caused by dysfunction of mtDNA.
EN
In this study a wide range of genetic markers (12 microsatellites, 7 blood-group loci, 10 blood-protein loci) and mitochondrial DNA (mtDNA) were used to assess genetic diversity in Polish Heavy horses. Three random samples were sequenced for 421 bp of the mitochondrial D-loop region, but no clear phylogenetic patterns were seen in mtDNA variation. Both heterozygosity and diversity levels are fairly high in Polish Heavy horses. In phylogenetic analysis the draught horses form a distinct cluster that pairs with the true pony breeds. Within this 'cold-blooded' group, the Polish Heavy Horse clusters most closely with the Posavina breed from Croatia and the Breton breed from France. From the standpoint of genetic conservation, the Polish Heavy Horse does not appear to be in jeopardy.
10
Content available remote Mitochondrial DNA in pathogenesis of Alzheimer's and Parkinson's diseases
75%
EN
A critical role of mitochondrial dysfunction and oxidative damage has been implicated in etiopathology of many neurodegenerative disorders, as well as in normal aging. Alzheimer's and Parkinson's diseases are common devastating late-onset neurodegenerative disorders, associated with mitochondrial DNA variations, which are suggested to affect mitochondrial functions. This paper reviews the current knowledge on the inherited and somatic mtDNA variations in both conditions.
EN
Unlike the vast majority of organisms in which mitochondrial DNA is transmitted maternally (standard mitochondrial inheritance, SMI), some marine or freshwater bivalves exhibit a different pattern of mtDNA transmission, named doubly uniparental inheritance (DUI). In this case there are two types of mtDNA, i.e. the female-transmitted (F-type) and the male-transmitted (M-type), the latter being present only in the male gonads of Unionidae bivalves. Current knowledge on DUI does not cover any freshwater mussels that are found in Poland. This study confirms DUI of mtDNA in A. woodiana, a Chinese mussel discovered in Poland in 1993. The sequence divergence in the COI gene region for the F-type ranged between 0% (separately for Polish and Japanese mussels) and 8.1% (between Polish and Japanese specimens). On the other hand, this parameter was higher for the M-type, reaching 9.7% between Polish and Japanese specimens. Sequence divergence between the F- and M-types reached 34-35% and, although very high, was still characteristic for the bivalves in which DUI had been found.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.