Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Łojasiewicz-Siciak condition for the pluricomplex Green function
100%
EN
A compact set $K ⊂ ℂ^N$ satisfies Łojasiewicz-Siciak condition if it is polynomially convex and there exist constants B,β > 0 such that $V_K(z) ≥ B(dist(z,K))^β$ if dist(z,K) ≤ 1. (LS) Here $V_K$ denotes the pluricomplex Green function of the set K. We cite theorems where this condition is necessary in the assumptions and list known facts about sets satisfying inequality (LS).
PL
We present a collection of facts given by the outstanding Polish mathematician Franciszek Leja (1885‒1979) in his unpublished memoirs, add some other information about him and list some institutions bearing his name.
3
Content available remote Some novel ways of generating Cantor and Julia type sets
100%
EN
It is a survey article showing how an enhanced version of the Banach contraction principle can lead to generalizations of attractors of iterated function systems and to Julia type sets.
4
Content available remote Generalized iterated function systems, multifunctions and Cantor sets
63%
EN
Using a construction similar to an iterated function system, but with functions changing at each step of iteration, we provide a natural example of a continuous one-parameter family of holomorphic functions of infinitely many variables. This family is parametrized by the compact space of positive integer sequences of prescribed growth and hence it can also be viewed as a parametric description of a trivial analytic multifunction.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.