Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Chronic obstructive pulmonary disease (COPD) is characterized by chronic airway inflammation. Cigarette smoke has been considered a major player in the pathogenesis of COPD. The inflamed airways of COPD patients contain several inflammatory cells. Vitamin A metabolites have been implicated in the repair of lung damage. Exposure to cigarette smoke has been shown to depress levels of retinol in lungs of rats. The purpose of this study was to investigate if a low, but not deficient, vitamin A status potentiated susceptibility to the development of cigarette smoke-induced lung emphysema in mice. Mice were bred that were the offspring’s of 3 generations of mice that were fed a purified diet containing low levels of vitamin A and exposed to cigarette smoke for 3 months, every weekday. Then, levels of 9-cis, 13-cis, and all-trans retinoic acid, retinol and retinyl palmitate were measured in plasma, liver and right lung lobe. The left lung lobe was used to assess mean linear intercept (Lm), as a measure of smoke-induced lung damage. Average feed intakes were not different between treatment groups. We show that both retinol and retinyl palmitate levels were dramatically decreased in the storage organs of mice on the low vitamin A diet (retinol 2-fold in both lung and liver, and retinyl palmitate 5- fold in lung) which shows that the depletion was successful. However, this treatment did not result in the development of lung emphysema. However, smoke exposure led to a significant increase in Lm in mice with a low vitamin A status compared to the room air-breathing controls. Lung levels of acid retinoids were similar in all mice, irrespective of diet or smoke exposure. Concluding, a low vitamin A status increases the susceptibility to the development of cigarette smoke-induced lung emphysema, possibly because of decreased anti-oxidant capacity in the lungs due to locally reduced retinol and retinyl palmitate levels. These observations indicate that human populations with a low vitamin A status and a high prevalence of smoking may be at increased risk of developing lung emphysema.
EN
The prevalence of asthma has increased worldwide. The reasons for this rise remain unclear. Oxidative stress plays an important role in the pathogenesis of asthma. Glutathione (GSH) is the major representative of the class of nonprotein thiols and plays a pivotal role in a variety of enzymatic and nonenzymatic reactions that protect tissues against oxidative stress. In antioxidative reactions, GSH is converted into its oxidized form, glutathione disulfide (GSSG) that in its turn is enzymatically reduced into GSH to maintain a physiological redox balance. We used a guinea pig model of asthma to assess whether the early asthmatic reaction is associated with decreased lung levels of glutathione, and whether decreased glutathione is implicated in the increased airway smooth muscle reactivity that is associated with exposure of the lungs to allergen. Lung glutathione levels were decreased immediately after the onset of the early asthmatic reaction in vivo and associated with the release of 8-iso-PGF2alpha, an indicator for oxidative stress. Glutathione ethylester, a glutathione precursor, blunted the airway obstruction during an early asthmatic reaction in a perfusion model and glutathione depletion rendered the airways hyperreactive. Glutathione ethyl ester in the buffer prevented this hyperreactivity. These results indicate that glutathione can modulate the early asthmatic reaction as well as the airway hyperresponsiveness.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.