Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
There are many theories of aging and a number of them encompass the role of mitochondria in this process. Mitochondrial DNA mutations and deletions have been shown to accumulate in many tissues in mammals during aging. However, there is little evidence that these mutations could affect the functioning of aging tissues.
EN
INTRODUCTION: Mitochondrial encephalomyopathies comprise a group of heterogeneous disorders which may result from mutations in mitochondrial (mtDNA) and nuclear genome (nDNA). From a variety of symptoms progressive external ophthalmoplegia (PEO) seems to be the most common. AIM(S): The aim of this study was the clinical and genetic characteristics of Polish patients with progressive external ophthalmoplegia. METHOD(S): Clinical, electrophysiological, neuroradiological and morphological data of 45 patients aged 11 to 76 years were analyzed. Genetic studies of mtDNA were performed in all patients. Among nDNA genes POLG was studied in 15 and C10orf2 in 6 patients. RESULTS: 16 patients with ptosis and PEO were included to chronic progressive external ophthalmoplegia (CPEO) group and 13 with ptosis, PEO and limb or trunk muscles’ weakness to CPEO+ group. There were 11 patients with PEO and the central nervous system impairment classified as mitochondrial encephalomyopathy (ME), 4 patients with Kearns-Sayre syndrome (KSS) and one patient with sensory ataxic neuropathy, dysarthria, ophthalmoparesis (SANDO) syndrome. Genetic studies of mtDNA revealed already known single or multiple mtDNA deletions in all patients and in most cases they were detected in the muscle tissue. Genetic analysis of nDNA genes confirmed mutations in POLG gene in 6 patients. There were 3 CPEO patients with p.[Arg309Leu];[Gln968Glu], p.[Ala518Thr];[=] and p.[Trp748Ser];[Ser998Pro] mutations, and 2 CPEO+ patients with p.[Thr251Ile;Pro587Leu];[Thr251Ile;Pro587Leu] and p.[Thr251Ile;Pro587Leu];[Lys1191Asn] mutations. In patient with SANDO syndrome the mutation p.[Arg290Cys];[Arg309Cys] in POLG gene was confirmed. Additionally the analysis of the C10orf2 gene proved the mutation p.[Arg374Gln];[=] in one CPEO patient CONCLUSIONS: Genetic studies of both mtDNA and nDNA are necessary for diagnosis of chronic progressive external ophthalmoplegia and its genetic counseling.
EN
Polymorphisms in mitochondrial DNA (mtDNA) were analyzed in 152 samples from the Polish population using restriction enzymes AvaI, BamHI, HaeII, HpaI and PstI. Additionally, each sample was classified into the appropriate haplogroup. When required, appropriate fragments were sequenced to establish the exact poly­morphic sites. We found one new morph for PstI and six new morphs for AvaII. Some detected morphs have previously been described as population specific morphs in different regions of the world. All polymorphisms were classified into 31 different haplotypes. 21 of them were detected in single individuals. The Polish population was compared with other populations from different regions. Moreover, we have ob­tained evidence for mutation hot spots in the mtDNA coding region. Our results indi­cate that AvaII morph and haplogroup composition of the Polish population is simi­lar to other European populations and has a distribution typical for this part of the world. However, statistically significant differences in haplogroup composition were found between the Polish population and Italian and Finnish populations.
EN
Mitochondrial diseases, caused by dysfunction of the respiratory chain are characterised by very high clinical as well as genetic heterogeneity. In most of the cases multiple organs and systems are involved with special place taken by muscular and nervous systems due to their high respiratory requirements. From the genetic point of view mitochondrial diseases are exceptionally difficult to study. As the respiratory chain function is secured by the cooperation of up to 1500 proteins, the number of genes in which mutations may lead to OXPHOS dysfunction may be close to that number. Another difficulty is that the respiratory chain subunits are encoded by two different genomes. 13 of them are localised in mitochondrial DNA (mtDNA) – small, multicopy maternally inherited molecule. The remaining 70 are nuclear encoded. This means that the mutations responsible for mitochondrial diseases may be inherited both in a mendelian and a maternal way. A group of the diseases caused by mutations in nuclear genes encoding proteins responsible for mtDNA maintenance is worth mentioning. mtDNA depletion or multiple deletions are observed as a result of such mutations. POLG and C10orf2 mutations are the most frequent in Polish patients. Next generation sequencing (NGS) enabled detailed analysis of both genomes. The application of NGS to mtDNA analysis in our hands has proven to be an effective tool to capture known as well as novel pathogenic variants. Due to the high number of reads and high coverage it also allows the detection of low levels of heteroplasmy. WES was applied to analyse genetic background of the disease in adult patients with progressive external ophthalmoplegia, multiple mtDNA deletions and negative screening for POLG and C10orf2 mutations. The preliminary results indicate that the success ratio is much lower than in paediatric patients. FINANCIAL SUPPORT: This work was supported by the National Science Center of Poland grant 2014/15/B/ NZ2/02272.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.