Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 15

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Type I CdSe and CdMgSe Quantum Wells
100%
EN
In this work we present the band gap engineering, epitaxial growth and optical characterization of CdSe/Cd_{0.9}Mg_{0.1}Se and Cd_{0.9}Mg_{0.1}Se/Cd_{0.85}Mg_{0.15}Se quantum wells with a thickness ranging from 1 to 15 nm. These structures exhibit strong near-band-gap photoluminescence from helium up to room temperature. The emission energy is tuned in the range from 1.74 to 2.1 eV at 7 K, depending on the thickness and well composition. The most intense photoluminescence (both at 7 and 300 K) was observed for 10 nm thick CdSe/Cd_{0.9}Mg_{0.1}Se wells. Such a structure gives also a sharp emission line (FWHM = 20 meV) at low temperature. The presented quantum wells are well suited for being embedded in lattice matched ZnTe based microcavities.
EN
The rate equation is used for description of photoluminescence dynamics after pulsed excitation of various states of quantum dots. The picosecond dynamics of averaged charge state of quantum dot is described. We compare our simulations with the experiment and come up with the conclusion that probability of carrier capture weakly depends on quantum dot charge state and that electrons and holes are captured non-synchronously.
EN
We study electron-hole exchange interaction in a single CdTe/ZnTe quantum dot by polarization-resolved photoluminescence measurements. We focus on recombination of excitonic states involving p-shell electrons: X^{2-} and XX^-. Recombination lines of X^{2-} and XX^- states exhibit fine structure, which can be consistently explained within a model with four parameters δ_{i}^{αβ} representing strength of iso- and anisotropic parts of interaction between s-hole and s- or p-electron.
EN
We examine the influence of a weak non-resonant illumination on the quantum dot photoluminescence spectrum. We observe that even very weak illumination affects both intensity and spectral position of emission lines in the spectrum. We discover no significant asymmetry in spatial dependence and infer that the observed effects cannot be attributed to a single neighbor center.
5
Content available remote Magnetization Dynamics of a (Cd,Mn)Te Quantum Well in Pulsed Magnetic Field
100%
EN
In this paper we present studies of magnetization relaxation in a (Cd,Mn)Te quantum well containing 3.2% of Mn, after a pulse of magnetic field. The relaxation was found to be very fast, with dominant component faster than 10 ns. Upon application of static magnetic field the relaxation does not slow down, in contrast with the behavior of very diluted quantum wells or bulk material.
EN
Systematic studies of neutral heavy-hole excitonic line energy changes in a strong excitation regime were carried out by means of a pump-probe method for quantum wells containing a 2D gas of free holes. Energy shift of X_{e1hh1} line was analyzed for different excitation energies at fixed delay between pump and probe pulses, also under external magnetic field. It was observed that this shift depends not only on the density of created excitons but also directly on the pump energy. In co-polarization configuration for excitation energy below an absorption resonance the energetic blue shift rises linearly with the elevated exciton density (localized excitons are created). For energies slightly above the resonance, the blue shift diminishes dramatically in spite of high exciton density present (delocalized excitons are created). Model absorption calculations are in qualitative agreement with the experimental data.
7
Content available remote MBE Growth and Magnetooptical Properties of (Zn,Co)Te Layers
100%
EN
We report on epitaxial growth of diluted magnetic semiconductor (Zn,Co)Te. Reflectivity spectra reveal excitonic transition which split under magnetic field due to giant Zeeman effect. Magnetooptical effects can be described using literature data.
8
Content available remote Inter-Dot Coupling in a Self-Assembled Quantum Dot System
100%
EN
We present studies of resonant excitation of self-assembled CdTe/ZnTe quantum dots. Photoluminescence excitation measurements revealed existence of sharp resonances, common for photoluminescence lines attributed to different quantum dot charge states. We conclude from the ensemble of photoluminescence and photoluminescence excitation results that we observe energy transfer in coupled quantum dot pairs.
EN
In this work we demonstrate an application of Faraday rotation for measuring an extremely small Zeeman splitting of an Mn related absorption line placed at 1.417 eV in optical absorption spectrum of Mn and Mg doped gallium nitride. Analysis of the collected spectra allowed us to determine the value of the splitting as equal to 0.12±0.01 meV at 6 T. This data should help in establishing the nature of the observed absorption band.
10
84%
EN
We report on an optical study of ZnTe-based microcavity and micropillars. Angle-resolved reflectivity studies confirm a high quality of the investigated structure by setting the lower bound on the quality factor Q ≥ 1000, determined from normal-incidence reflection spectra. In a microphotoluminescence study, micropillar modes are observed at temperatures of the order of tens of kelvins. For structures grown by a complex growth procedure at two different MBE facilities, an enhancement of photoluminescence in the cavity mode is observed.
11
Content available remote Spin-Related Spectroscopy of CdTe-Based Quantum Dots
84%
EN
This work contains a selection of our recent experimental results in the field of the spin-related spectroscopy of individual CdTe-based quantum dots. After a short description of the sample growth and experimental methods, optical measurements of the charge state dynamics are presented. Then the influence of in-plane anisotropy of the excitonic states of a quantum dot is discussed, followed by a description of experimental studies of information read-out and writing on quantum dot spin states. In particular, spin memory of a single Mn^{++} ion embedded in a CdTe quantum dot is quantitatively assessed. In an outlook part, perspectives opened by recently developed ZnTe lattice-matched Bragg reflectors are discussed.
12
Content available remote MBE Growth of CdTe/ZnTe Quantum Dots with Single Mn Ions
84%
EN
We report MBE growth and properties of samples with self assembled quantum dots with single manganese ions and low density of quantum dots. Manganese concentration was calibrated using magneto-reflectivity measurements and the giant Zeeman effect in (Cd,Mn)Te and (Zn,Mn)Te layers. Successful incorporation of Mn in the CdTe/ZnTe quantum dots was confirmed using micro-photoluminescence measurements: single manganese ion in quantum dot manifests in sixfold splitting of exciton emission lines due to s, p-d exchange interaction.
13
Content available remote Optical Properties of CdTe QDs Formed Using Zn Induced Reorganization
84%
EN
In this paper we present optical studies of CdTe quantum dots formed using Zn-induced reorganization. The pattern of quantum dot photoluminescence lines is found to be similar to typical results reported for quantum dots grown with other techniques, although the positively charged exciton line is relatively more pronounced. Also the energy spacing between biexciton and exciton lines is found to be larger than in typical results. Zn-induced reorganization results in quantum dots density higher by an order of magnitude than in Te-induced quantum dots.
14
84%
EN
We discuss possible mechanisms of quantum dot population control. A set of experiments, including time-resolved photoluminescence, single photon correlations, excitation correlation, and photoluminescence excitation is used to determine the actual mechanism under non-resonant and quasi-resonant regime.
15
Content available remote Growth and Properties of ZnMnTe Nanowires
59%
EN
Catalytically enhanced growth of ZnMnTe diluted magnetic semiconductor nanowires by molecular beam epitaxy is reported. The growth is based on the vapor-liquid-solid mechanism and was performed on (001) and (011)-oriented GaAs substrates from elemental sources. X-ray diffractometry, scanning and transmission electron microscopy, atomic force microscopy, photoluminescence spectroscopy, and Raman scattering were performed to determine the structure of nanowires, their chemical composition, and morphology. These studies revealed that the obtained ZnMnTe nanowires possess zinc-blende structure, have an average diameter of about 30 nm, typical length between 1 and 2μm and that Mn^{2+} ions were incorporated into substitutional sites of the ZnTe crystal lattice.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.