Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W pracy przedstawiono wyniki badań mikroskopowych stomatologicznych biomateriałów metalicznych wybranych spośród stopów Ni-Cr-Mo oraz materiałów tytanowych, po okresie 4 tygodni inkubacji w płynie SBF. Przeprowadzono badania mikrostruktury powierzchni oraz analizę chemiczną w mikroobszarach (EDS). Badania mikroskopowe warstw, którymi pokryły się próbki po termostatowaniu przeprowadzono przy użyciu skaningowego mikroskopu elektronowego (SEM) z mikroanalizatorem dyspersji energii promieniowania rentgenowskiego (EDS). Na podstawie przeprowadzonych badań wykazano różnice w zdolności powierzchni wybranych biomateriałów stomatologicznych do pokrywania się warstwą hydroksyapatytu w środowisku SBF.
EN
The paper presents the results of microscopic examination of dental metallic biomaterials selected from Ni-Cr-Mo alloy and titanium materials after a four-week incubation in SBF solution. The surface microstructure examination and chemical microrange analysis (EDS) were conducted. The microscopic examination of layers which covered the samples after keeping in SBF solution were performed using a scanning electron microscope (SEM) with energy-dispersive (EDS) X-ray microanalyser. Based on the results, differences in the capability of selected dental biomaterials surfaces of being covered with a hydroxyapatite layer in SBF environment were demonstrated.
EN
Following the request for novel composite biomaterials for bone tissue engineering, nanocomposites consisted of ε-polycaprolactone and wollastonite, were prepared. Primary mechanical properties were examined and it was shown that the presence of wollastonite nano-particles affects significantly the Young’s modulus, tensile strength, fracture stress and work-of-fracture of the polymer matrix.
PL
Celem pracy było opracowanie metody wytwarzania bioaktywnego materiału implantacyjnego przeznaczonego dla chirurgii kostnej. Bioceramiczne tworzywo otrzymano drogą obróbki termicznej prekursora krzemoorganicznego, zawierającego aktywne dodatki. Skład fazowy materiału ceramicznego badano za pomocą spektroskopii w podczerwieni (FTIR) oraz dyfrakcji rentgenowskiej (XRD). Mikrostrukturę otrzymanego materiału analizowano za pomocą skaningowej mikroskopii elektronowej (SEM) połączonej z mikroanalizą rentgenowską (EDS). Przeprowadzono test bioaktywności w warunkach "in vitro" poprzez przetrzymywanie materiałów ceramicznych w SBF-ie. Badania wykazały, że obróbka termiczna prekursora krzemoorganicznego zawierającego aktywne wypełniacze prowadzić może do otrzymania tworzywa ceramicznego zawierającego wolastonit, charakteryzującego się bioaktywnością w warunkach "in vitro".
EN
The aim of this work was to elaborate the preparation method of bioactive implant material for bone surgery applications. The bioceramic material was obtained by thermal treatment of active fillers-containing organosilicon precursor. The phase composition of ceramic material was analysed by means of infrared spectroscopy (FTIR) and XRD analysis (XRD). The microstructure of the obtained material was studied by scanning electron microscopy (SEM) with EDS point analysis. The bioactivity test in "in vitro"conditions was determined by immersing of ceramic samples in SBF. It was found that thermal treatment of active filters-containing organosilicon precursor leads to formation of wollastonite-containing ceramic material. The ceramic material demonstrates bioactivity in "in vitro" conditions.
EN
PCL (poly-ε-caprolactone) is a biocompatible and biodegradable polymer of aliphatic polyester group. However, PCL does not effectively bind to the bone in contrast to bioactive inorganic compounds such as wollastonite. For this wollastonite (WS) is regarded as a potential bioactive material for bone tissue engeenering although its main drawback is brittlennes. Therefore we synthesized polymer nanocomposite materials composed of poly-ε-caprolactone and wollastonite (PCL/wollastonite) containing either 0.5% or 5% of the latter modifying filler. And we aimed to verify biological properties of the nanocomposite PCL/WS materials, in comparison to the pure PCL, on cultures of osteoblast-like cells MG-63. The study revealed that the adherence of the osteoblast-like cells to the tested materials was enhanced by the PCL modification (PCL/5WS > PCL/0.5WS > PCL) while cell viability/proliferation was not altered. Furthermore, the activity of alkaline phosphatase indicative of osteoblast differentiation (maturation) was enhanced when the cells were cultured with either PCL/5WS or PCL/0.5WS. Overall, our results indicate that PCL-modified wollastonite improves biological properties of the basic biomaterial suggesting its potential usefulness/application for the bone tissue regeneration.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.