Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Dispersion Kinetics Modelling
100%
PL
Stirred tanks for dispersion, the pre-dispersion of two immiscible liquids or particulate solidliquid suspension are extensively used in the chemical, food, pharmaceutical and metallurgical industries, for purposes such as suspension/emulsion polymerisation, heterogeneous/phase-transfer catalytic chemical reactions, paint production and hydrometallurgical solvent extraction. The aim of this paper is to propose the simple dispersion model enabling the prediction of particle size changes over time and taking into account the type of breakup mechanisms, the non-homogeneity of local turbulent energy dissipation rate in an agitated vessel and the effect of the number of times the liquid passes through the impeller and the impeller zone. The model was successfully tested on data published by Ditl et al. (1981).
2
100%
EN
The effect of flocculation time, flocculant dosage, pollutant concentration, mixing intensity and tank size on flocculation performance was experimentally studied in a mechanically agitated vessel. The macroscopic approach was applied for fl occulation modelling. The simple semi-empirical generalized correlation for flocculation kinetics proposed by Šulc (2003a) and the simple semi-empirical generalized correlation quantifying the effect of flocculation time and flocculant dosage on fl occulation proposed by Šulc, Ditl (2007) were used for data treatment.
3
Content available remote Local Turbulent Energy Dissipation Rate in a Vessel Agitated by a Rushton Turbine
80%
EN
The scaling of turbulence characteristics such as turbulent fluctuation velocity, turbulent kinetic energy and turbulent energy dissipation rate was investigated in a mechanically agitated vessel 300 mm in inner diameter stirred by a Rushton turbine at high Reynolds numbers in the range 50 000 < Re < 100 000. The hydrodynamics and flow field was measured using 2-D TR PIV. The convective velocity formulas proposed by Antonia et al. (1980) and Van Doorn (1981) were tested. The turbulent energy dissipation rate estimated independently in both radial and axial directions using the one-dimensional approach was not found to be the same in each direction. Using the proposed correction, the values in both directions were found to be close to each other. The relation ε/(N3·D2) ∞ const. was not conclusively confirmed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.