This paper utilizes industrial CO₂ emissions efficiency as a measure of the low-carbon transformation index and used industrial provincial panel data during 1997-2014 and industrial panel data during 2000- 14 based on the modified Super-SBM model with undesirable outputs that measure carbon efficiency levels of different provinces and industrial sectors in China. Differences among sectors and provinces were calculated using the Dagum Gene coefficient and the subgroup decomposition method, and the determinants of carbon efficiency were explored by regression analysis. It turns out that industrial CO₂ emissions efficiency in China is generally low, and it has been steadily improving since 2003. Industrial carbon efficiency shows the unbalanced characteristics (high in eastern areas, low in western areas) and the value of the western regions was overtaken by the central region during the period of the 12th Five-Year Plan. From the perspective of industrial sectors, industrial CO₂ emissions efficiency of lightly polluted industries is significantly higher than that of moderately and heavily polluted industries. In addition, the carbon efficiency of technology-intensive industries and clean production industries as part of industries with light pollution is at an optimal level, while that of some resource-intensive industries and traditional manufacturing industries is relatively low. Both the regional and industrial sectors’ Dagum Gini coefficients of industrial carbon efficiency exhibit the tendency of down first, and then up and stable on the whole. The regional disequilibrium problem mainly arises from the gap between the eastern and western regions, and the inter-industry gap is primarily manifested between heavily polluted and lightly polluted industries. The relationship between scale effect and industrial carbon efficiency presents a “U”-type curve. Ownership structure, technological innovation, government environment, and openness degree can all have a positive effect on industrial carbon efficiency, while endowment structure and energy consumption structure exert markedly negative effects. However, effects of these factors differ among different areas and different sectors.
Ship maneuvering models are the keys to the research of ship maneuverability, design of ship motion control system and development of ship handling simulators. For various frames of ship maneuvering models, determining the parameters of the models is always a tedious task. System identification theory can be used to establish system mathematical models by the system’s input data and output data. In this paper, based on the analysis of ship hydrodynamics, a nonlinear model frame of ship maneuvering is established. System identification theory is employed to estimate the parameters of the model. An algorithm based on the extended Kalman filter theory is proposed to calculate the parameters. In order to gain the system’s input and output data, which is necessary for the parameters identification experiment, turning circle tests and Zig-zag tests are performed on shiphandling simulator and the initial data is collected. Based on the Fixed Interval Kalman Smoothing algorithm, a pre-processing algorithm is proposed to process the raw data of the tests. With this algorithm, the errors introduced during the measurement process are eliminated. Parameters identification experiments are designed to estimate the model parameters, and the ship maneuvering model parameters estimation algorithm is extended to modify the parameters being estimated. Then the model parameters and the ship maneuvering model are determined. Simulation validation was carried out to simulate the ship maneuverability. Comparisons have been made to the simulated data and measured data. The results show that the ship maneuvering model determined by our approach can seasonably reflect the actual motion of ship, and the parameter estimation procedure and algorithms are effective.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, one kind of high dynamic range imaging (HDRI) system is analyzed and the feedback stability is optimized. In this system, space light modulator (SLM) is used to modulate the input illuminance with the feedback signals. Because of the illuminance uncertainty of the scene, the feedback may take too long or turn into oscillations. To acquire the optimized feedback configuration, PID theory is used to analyze the feedback process. After PID parameter is obtained, simulations are applied to study the parameters. The optimized value range and principle of choice for the feedback control are discussed. Lastly, imaging experiments are conducted to obtain high dynamic range images, and the results prove the validity of PID parameters.
In this paper, a novel colour clustering method based on the K-means clustering algorithm is developed for interlaced multi-coloured dyed yarn woven fabrics which can be used to sort the colour of the dyed yarn for the development of a quick response fabric system. Firstly fabric images captured by a flat scanner could be decomposed into three sub-images in red, green and blue channels, respectively. Secondly median filters with different template sizes were selected to process the sub-images in the three color channels separately. Thirdly filtered images in the RGB colour space, reconstructed from the three sub-images, can be converted into the Lab colour format. Ultimately the results of colour segmentation and classification can be obtained based on the Lab color space using the improved Kmeans clustering algorithms. Our experimental results indicated that our method proposed works better than the conventional method based on subjective and manual operations with the aid of simple tools in terms of both accuracy and robustness.
PL
Pokazano opracowanie nowej metody określania łączenia kolorów, opartej na algorytmach uzyskiwania wartości średnich mających zastosowanie przy wielokolorowych przędzach przeplatanych w tkaninach. Metoda może być stosowana przy określaniu kolorów barwionych przędz, aby uzyskać szybką odpowiedź barwy dla różnego rodzaju tkaniny. Wstępnie obrazy tkaniny uzyskane z płaskiego skanera mogą być zdekomponowane w trzy sub-obrazy w kanałach czerwonym, zielonym i niebieskim, następnie filtry uśredniające o zróżnicowanych wymiarach wzorców zostają wybrane dla obróbki sub-obrazów niezależnie w trzech kanałach barwnych. Po tym przefiltrowane obrazy w przestrzeni RGB są rekonstruowane w tych trzech kanałach i mogą być przetworzone w systemie kolorystycznym Lab. W końcu wyniki segmentacji kolorów i klasyfikacji mogą być uzyskane, bazując na przestrzeni kolorystycznej Lab przy zastosowaniu poprawionego algorytmu łączenia. Wyniki eksperymentalne wskazują, że zaproponowana metoda daje możliwość uzyskania lepszych rezultatów niż metoda konwencjonalna oparta o subiektywne, ręczne operacje z zastosowaniem prostych narzędzi.
Pojedynczy kryształ BaGd2(MoO4)4 domieszkowany 1% at. Er3+ wyhodowano metodą Czochralskiego. Omówiono szczegóły procedury otrzymywania i wzrostu kryształu. Kryształ ma doskonałą płaszczyznę poślizgu (010), a jego łupliwość czyni go przydatnym jako ośrodek czynny w mikrolaserach. Zmierzono widmo absorpcyjne w zakresie światła widzialnego i bliskiej podczerwieni (NIR) w temperaturze pokojowej. W zakresie od 380 do 1600 nm występuje kilka intensywnych pików absorpcyjnych. Zmierzono również widmo fluorescencyjne wzbudzane za pomocą lampy ksenonowej. Zaobserwowano intensywny pik emisyjny NIR 1536 nm. Czasy trwania fluorescencji 4I13/2 oraz 4I11/2 wyznaczone za pomocą dopasowania krzywej wykładniczej wyniosły odpowiednio 5,85 ms i 112,62 μs. Ciepło właściw Er3+ BaGd2(MoO4)4 w 25°C wynosi 0,471 J g-1 K-1. Na podstawie zmierzonych widm obliczono parametry optyczne na podstawie teorii Judda-Ofelta (J–O).
EN
A 1 at % Er3+ doped BaGd2(MoO4)4 single crystal was grown by the Czochralski method. Details on the preparation and growth procedures were discussed. The crystal has a perfect (010) cleavage plane, and the cleavage character makes the crystal suitable as a gain medium for microchip lasers. The absorption spectrum in the visible and near-infrared (NIR) regions was measured at room temperature. There are several strong absorption peaks in the range from 380 to 1600 nm. The fluorescence spectrum excited by a Xenon lamp was also measured. A strong NIR emission peak located at 1536 nm was observed. The fluorescence lifetimes of 4I13/2 and 4I11/23+:BaGd2(MoO4)4 at 25°C is 0.471 J g-1 K-1. Using the measured spectra, the optical parameters were calculated using the J–O theory.
Anthropogenic and agricultural activities are deteriorating drinking water quality of the Siling reservoir. Spatio-temporal variations and risk assessment of select heavy metals (Zn, Cu, Mn, Fe, Cr, Cd, and Pb) were investigated in water samples. During summer Mn (37.32 μg/L), Fe (41.0 μg/L), and Cd (1.18 μg/L) concentrations were higher in the water samples, while the concentrations of Zn (86.12 μg/L), Fe (42.0 μg/L), and Pb (30.82 μg/L) were dominant in winter. However, Cr exhibited elevated concentrations in both seasons. The health-risk assessment revealed that hazard quotient (HQing) and hazard index (HIing) values were near to the acceptable limit, indicating non-carcinogenic risk to the recipient via oral intake of water. The calculated values for chronical daily intake (CDI) were found in the order of Cr > Fe > Mn > Zn > Cd in summer and Zn > Fe > Cr > Pb > Mn > Cu during winter. The carcinogenic risk (CRing) via ingestion route for Cr, Cd, and Pb were noted higher than the acceptable limit (10⁻⁶). Multivariate statistical analysis such as cluster analysis (CA) and principal component analysis (PCA) results revealed that natural processes and anthropogenic activities were the main sources of water contamination. The data provided in this study are considered essential for reservoir remediation. The results suggested that quick action should be taken to protect the drinking water integrity of the Siling reservoir watershed from the different nonpoint pollution sources, especially the application of agricultural fertilizers.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.