A Fibonacci-type probability distribution provides the probabilistic models for establishing stopping rules associated with the number of consecutive successes. It can be interpreted as a generalized version of a geometric distribution. In this article, after revisiting the Fibonaccitype probability distribution to explore its definition, moments and properties, we proposed numerical methods to obtain two estimators of the success probability: the method of moments estimator (MME) and maximum likelihood estimator (MLE). The ways both of them performed were compared in terms of the mean squared error. A numerical study demonsrated that the MLE tends to outperform the MME for most of the parameter space with various sample sizes.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.