In this paper the problem of vibration reduction is considered. Generally, mechanical vibrations occurring during the operation of a system are undesirable and may have a negative effect on its reliability. A finite element model of a single active blade is developed using the Abaqus software. This structure consists of a multi-layer glass-epoxy composite beam with an embedded macro fiber composite (MFC) piezoelectric actuator. For vibration control the use of a positive position feedback (PPF) controller is proposed. To include the PPF controller in the Abaqus software, a special subroutine is created. The developed control algorithm code makes it possible to solve an additional differential equation by the fourth order RungeKutta method. A numerical dynamic analysis is performed by the implicit procedure. The beam responses with and without controller activation are compared. The control subsystem model also includes the hysteresis phenomenon of the piezoelectric actuator. Numerical findings regarding the PPF controller’s effectiveness are verified experimentally.
The main goal of the research presented in this paper is to find an analytical solution for an electromagnetic energy harvester with double magnet. A double magnet configuration is defined as a structure in which two magnets, either attracting or repelling, are positioned at a constant distance from each other. Analytical dependencies that govern the shape of electromechanical coupling coefficient curves for various double magnet configurations are provided. In the subsequent step of the analysis, resonance curves for its vibrations and the corresponding recovered energy were determined for the selected dual magnet settings using the harmonic balance method. These characteristics enabled us to ascertain the optimal resistance and estimate the maximum electrical power that can be harvested from the vibrations of the double magnets.
In this paper, a model of an electromagnetic system with two levitating magnets is presented. Modeling was performed using the results of experiments. The data obtained make it possible to fit the magnetic forces between two magnets using a 5th order polynomial. The time series show that dry friction constitutes an important part of damping forces. The differential equations of motion consider strong nonlinearities of magnetic and damping forces. These terms cause the nonlinear hardening effect. The energy recovered by magnetic induction is dissipated in the resistors. Numerical simulations show that resistance has an impact on magnet dynamics and energy recovery. From the resonance characteristics obtained, optimal resistance is determined when energy recovery is the highest.
The paper describes the dynamics of a composite cantilever beam with an active element. The vibrations of the kinematically excited beam are controlled with the use of a Macro Fiber Composite actuator. A proportional control algorithm is considered. During the analysis, actuator is powered by a time-varying voltage signal that is changed proportionally to the beam deflection. The MFC element control system with the implemented algorithm allowed for changing the stiffness of the tested structure. This is confirmed by the numerical and experimental results. Resonance curves for the beam with and without control are determined. The results show a very good agreement in qualitative terms.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.