Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The article deals with the problems of handling used motor oils on the railways of Ukraine. At the moment, this waste is transferred to other enterprises for disposal. But, based on international experience, it is advisable to be regenerated directly at the enterprise where it is formed. The purpose of this work is to develop a modern scheme for oil waste disposal. In this regard, various indicators were investigated, reflecting both the operational suitability of oils and their toxicological parameters. As a result, we proposed a scheme and selected special equipment for handling the used engine oils, which allows to reduce the technogenic load associated with their accumulation, handling and minimization, contributes to the return of oil to the technological process. The calculated value of the conditional environmental effect and the approximate payback period allowed us to draw conclusions about the undoubted environmental and economic effect of implementing the proposed scheme.
EN
Processing of metals by cutting under modern conditions becomes impossible without the use of effective cutting fluids. The main purpose of cutting fluids is cooling, lubrication of the workpiece processing area. Spent emulsion is a special type of wastewater, very dangerous to the environment, as it contains a large number of persistently emulsified petroleum products. The methods using various surfactants were tested for the cutting fluid disposal. The obtained results allowed proposing a general flow diagram of treatment of spent cutting fluids, as well as a block diagram of their purification. After processing the spent cutting fluids according to the proposed diagram, two products were obtained, namely water and sludge. This technology can be used in metalworking shops of railway enterprises, as well as the enterprises of machine-building, metallurgical and other industries where CF-effluents are formed within the wastewater complex. It will provide both an economic result through the reuse of water and will give a significant environmental effect by minimizing the amount of hazardous waste.
EN
The peculiarities of the operation of distributed generation systems lead to a change in the requirements for the reliability and safety of the power distribution systems in which they are integrated. To meet the increased requirements, continuous monitoring of the insulation parameters (active resistance and capacitance to ground) is often used with operating artificial non-industrial frequency operational signals introduced into the network. In the case of a sudden touch, such a system is not effective, since the response time of the protection device, which consists of the signal processing time and the operating of the actuator, is crucially important. For the used operational signals with a frequency of 100 and 200 Hz, the processing time using the Fourier transform is 10 ms for 100 Hz and 5 ms for 200 Hz. Considering that the response time of the fastest actuators (based on vacuum switches) is from 3 to 7 ms, this is a rather significant period of time. To develop an effective resolver system, the capabilities of the Matlab environment were used to determine the most successful design of an analog prototype (Butterworth, Bessel, Chebyshev and Cauer of 6th order) for an operational signal with a frequency of 200 Hz. As a result, the processing time was established, which varies widely from 3.5 to 19 ms. Taking into account the known indicators, namely the frequency and number of operational signals, a signal processing system was developed using the vector-matrix analysis method. As a result of modeling the processing characteristics of functional signals (at a sampling rate of 1 kHz), the system quick-response was 3 ms, with the possibility of its further decrease as its productiveness increases.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.