Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Layered magnetic heterostructures are very promising candidates in spintronics in which the influences of interfaces, surfaces and defects play a crucial role. X-ray photoelectron spectroscopy (XPS) study has been performed for studying in detail the chemical state and electronic structure of Co2FeAl (CFA) Heusler alloy interfaced with Si substrates. XPS survey scan spectra have clearly shown the presence of Fe, Co and Al signal along with the signal due to Si. The presence of Co, Fe and Al signal confirms the formation of CFA alloy phase. Our XPS results support our previous study [1] on CFA/Si structure in determining the magnetic and transport properties across the interface.
2
Content available remote Synthesis and characterization of Co2FeAl Heusler alloy nanoparticles
100%
EN
Heusler alloy Co2FeAl (CFA) nanoparticles have been synthesized by reducing a mixture of the precursors: CoCl2_6H2O, Fe(NO3)3_9H2O and AlCl3_6H2O under H2 atmosphere. XRD, SEM and TEM techniques have been used for the characterization of the prepared material. XRD and SAED data from TEM show the formation of mixed phases of L21, B2 and A2 type crystal structure of the alloy. The estimated particle size from XRD data and TEM micrograph has been found in the range of 10 nm to 50 nm. The saturation magnetization has been found of 115 emu/g from M-H characteristics which is close to its bulk value of saturation magnetization. Chemical composition of the elements has also been estimated from EDAX, which shows a ratio of Co:Fe:Al as 2.12:1.06:0.81.
EN
Nitrapyrin (2-chloro-6-(trichloromethyl)pyridine) is a specific nitrification inhibitor, applied in soils for reducing the nitrification process of nitrogenous fertilizers. The overall effect of nitrapyrin is enhancing the efficiency of nitrogenous fertilizers in soils and also controlling environmental pollution in water by preventing nitrate leaching in soils. Dissipation of nitrapyrin was evaluated in subtropical soils at two fortification levels of 2 and 4 µg·g⁻¹. The extraction of nitrapyrin was done by quick, easy, cheap, rugged and safe (QuEChERS) method and quantitative analysis – by high-performance liquid chromatography (HPLC). Nitrapyrin residues declined consistently with time in both types of soils and were not detectable (<0.05 µg·g⁻¹) on the 45th day at 2 µg·g⁻¹ and on the 60th day at 4 µg·g⁻¹ application rate. Dissipation of nitrapyrin occurred in a single phase with the persistence data fitting well to the first-order kinetics. The half-life of nitrapyrin was 9.6 and 9.9 d at 2 µg·g⁻¹ and 16.1 d and 17.3 d at 4 µg·g⁻¹ application rate in both types of soils. The results revealed higher persistence of nitrapyrin at higher concentration (4 µg·g⁻¹) in both types of soils, probably because of high temperature and humidity in subtropical soils.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.