Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The application of ferritic-matrix vermicular graphite cast iron in the production of fireplace fireboxes improves their thermal output, but the consumer market for these products prioritises their price. Given this consideration, this work concerns a comparison of the quality of vermicular graphite cast iron types produced from 0.025%S pig iron (a less expensive material) and 0.010%S pig iron (a more expensive material) in terms of the number and shape of vermicular graphite precipitates varying with the magnesium level in the alloy. It turned out that the vermicular graphite cast iron made with the 0.025%S pig iron demonstrated a slightly lower number of vermicular graphite precipitates. For both vermicular graphite cast iron melts, 0.028%Mg and 0.020%Mg in the alloys provided a vermicular graphite precipitate share of approx. 50% and 95%, respectively.
EN
The objective of the study reported in this paper was to determine the effect of structure on thermal power of cast-iron heat exchangers which in this case were furnace chambers constituting the main component of household fireplace-based heating systems and known commonly as fireplace inserts. For the purpose of relevant tests, plate-shaped castings were prepared of gray iron with flake graphite in pearlitic matrix (the material used to date typically for fireplace inserts) as well as similar castings of gray cast iron with vermicular graphite in pearlitic, ferritic-pearlitic, and ferritic matrix. For all the cast iron variants of different structures (graphite precipitate shapes and matrix type), calorimetric measurements were carried out consisting in determining the heat power which is quantity representing the rate of heat transfer to the ambient environment. It has been found that the value of the observed heat power was affected by both the shape of graphite precipitates and the type of alloy matrix. Higher thermal power values characterize plate castings of gray iron with vermicular graphite compared to plates cast of the flake graphite gray iron. In case of plates made of gray cast iron with vermicular graphite, the highest values of thermal power were observed for castings made of iron with ferritic matrix.
5
71%
EN
The paper presents results of a study on the effect of passage of time on magnesium content in iron alloys and the effect of magnesium content on the number of vermicular graphite precipitations per unit surface area and value of the longitudinal ultrasonic wave velocity for two different vermicularization methods. The study was carried out with the use of inspection bar castings. For specific production conditions, it has been found that in case of application of both the cored wire injection method and the method of pouring liquid metal over magnesium master alloy on ladle bottom, the satisfactory level of magnesium content in the bottom-pour ladle, for which it was still possible to obtain castings with vermicular graphite, was 0.018% Mg. In case of the cored wire injection method, the “time window” available to a pouring station at which castings of vermicular cast iron are expected to be obtained, was about 5 minutes. This corresponds to the longitudinal ultrasonic wave velocity values exceeding 5500 m/s and the number of graphite precipitations per unit surface area above 320 mm-2. In case of the master alloy method, the respective “time window” allowing to obtain castings of vermicular cast iron was only about 3 minutes long. This corresponds to the longitudinal ultrasonic wave velocity value above 5400 m/s and the number of graphite precipitations per unit surface area above 380 mm-2.
EN
The paper presents the results of calorimetric tests of segment elements of fireplace inserts. The aim of the work was to optimize their thermal power by replacing the previously used gray cast iron with flake graphite with gray iron with vermicular graphite and replacing the existing geometry of the heat transfer surface with a more developed one. It turned out that the thermal power of the test segments made of cast iron with vermicular graphite was higher compared to the segments of the same shape made of gray cast iron with flake graphite. It was found that the use of segments made of vermicular cast iron with a ferritic matrix allowed for an increase in the thermal power value by dozen percent, compared to segments of the same shape made of vermicular cast iron with a pearlitic matrix. The test results showed that the thermal power of the test segments depends on the variant of the development of both the heat receiving surface and the heat giving off surface. The highest value of the thermal power was obtained when ribbing in the form of a lattice was used on both of these surfaces, and the lowest when using flat surfaces.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.