Sequence tagged site (STS) markers have been developed recently to identify resistance genes in wheat. A number of wild relatives have been used to transfer resistance genes into wheat cultivars. Accessions of wild species of Triticeae: Aegilops longissima (4), Ae. speltoides (6), Ae. tauschii (8), Ae. umbellulata (3), Ae. ventricosa (3), Triticum spelta (2), T. timopheevi (3), T. boeoticum (4) and T. monococcum (1), 34 in total, were examined using PCR-STS markers for resistance genes against Puccinia recondita f.sp. tritici (Lr) and Erysiphe graminis (Pm). Additionally, a set of cv. Thatcher near-isogenic lines conferring resistance genes Lr 1, Lr 9, Lr 10, Lr 24, Lr 28, Lr 35 and Lr 37 were examined with the same procedure. Twenty-two accessions were tested using the inoculation test for resistance to Erysiphe graminis, Puccinia recondita, P. striiformis and P. graminis. The most resistant entries were those of Aegilops speltoides and Triticum timopheevi and among T. boeoticum accession #5353. Markers of all mentioned Lr resistance genes were identified in all corresponding cv. Thatcher near-isogenic lines (except Lr 35 gene marker). The following resistance gene markers were identified in wild Triticeae accessions: Lr 1 in two accessions of Ae. tauschii and one accession of Ae. umbellulata, Lr 9 in one accession of Ae. umbellulata, Lr 10 in one accession of T. spelta, Lr 28 in 11 accessions: Ae. speltoides (4), Ae. umbellulata (2), T. spelta (2) and T. timopheevi (3), Lr 37 in 3 accessions of Ae. ventricosa, Pm 1 in all 34 accessions, Pm 2 in 28 accessions, Pm 3 in all 4 accessions of T. boeoticum, 1 accession of T. spelta and 1 of T. timopheevi, and Pm 13 in 5 out of 6 accessions of Ae. speltoides. Reliability and usefulness of STS markers is discussed.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.