Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Chitosan is widely used to prepare films, hydro-gels, cryogels, sponges, fibers and other various biomaterials used in the tissue engineering field. It is one of the best processable polysaccharides used in biomedicine. However, its stability is generally lower as compared with others, due to its pH sensitivity and hydrophilic character. Using chitosan in combination with agarose may not only improve chemical and mechanical properties of the resultant material (by the formation of a biocomposite), but also lead to the formation of a gel imitating physical attributes of the extracellular matrix. Moreover, the combination of these two polysaccharides has a promising ability to improve the stability of chitosan and to increase fibroblasts’ affinity to agarose. Characteristic advan-tageous features of these natural polymers raise a wide interest in tissue engineering. The aim of this study was to develop and optimize a new method to produce a highly biocompatible foam-like chitosan/agarose wound dressing for skin healing applications. The production process optimization helped to obtain the absorbent foam-like biomaterial which is non-toxic to skin fibroblasts and does not conduce their adhesion. Employing sodium bicarbonate as the main agent in the foaming reaction not only led to obtaining the foam-like structure but also neutralized the acidic pH, making the material non-toxic and non-irritating to the skin. In conclusion, the new foam-like biomaterial has great potential for biomedical applications as the wound dressing accelerating the healing process of the damaged tissues.
EN
The problem of treating chronic wounds is widespread throughout the world and carries a huge cost. Biomaterials engineering tries to solve this problem by creating innovative bioactive dressings dedicated to specific types of wounds. Both synthetic and natural polymers are the main base to produce wound dressings. Biopolymers have the advantage over synthetic polymers by being more biocompatible, non-toxic, biodegradable, and eco-friendly. The aim of this work was to produce a bioactive biomaterial based on natural polymers with potential applications to manage chronic highly exuding and infected wounds. A newly developed method for chemical synthesis of the curdlan/agarose biomaterial at high temperature combined with freeze-drying process resulted in a superabsorbent dressing material with antibiotic immobilized. The obtained biomaterial was subjected to basic microbiological in vitro tests and a cytotoxicity assay according to ISO 10993-5. Moreover, the experimental treatment of the infected wound in a veterinary patient was performed using the developed material. Based on the conducted research, it was proved that the produced dressing is not toxic to normal human skin fibroblasts. An additional advantage of the biomaterial is its ability to inhibit the growth of harmful microorganisms, such as Staphylococcus aureus and Pseudomonas aeruginosa. Furthermore, the experimental treatment confirmed the validity of using the produced biomaterial as a dressing dedicated to the treatment of difficult-to-heal infected wounds. To summarize, the produced biomaterial possesses great potential to be used as a wound dressing for infected wounds.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.