Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Nanokompozyty polimerowe do zastosowań medycznych
100%
PL
Praca obejmuje badania nad biozgodnymi polimerami modyfikowanymi nanocząstkami ceramicznymi. Przedmiotem badań były nanokompozyty polimerowe, wytworzone z trzech różnych polimerów: polimeru biostabilnego (polisulfon - PSU), polimeru resorbowalnego (poli(L/DL)laktyd - PL(L/DL)A) oraz polimeru pochodzenia naturalnego (chitozan - CS). Jako modyfikatory zastosowano nanometryczne cząstki ceramiczne: montmorylonit (MMT), krzemionkę (SiO2) oraz nanorurki węglowe (CNT). Materiały nanokompozytowe zostały scharakteryzowane pod względem parametrów biologicznych i mechanicznych. Wyniki badań wskazują, że modyfikacja wszystkich trzech grup polimerów, przy zastosowaniu nanocząstek ceramicznych, to skuteczna droga do otrzymywania biozgodnych, bioaktywnych tworzyw, posiadających dodatkowo znacznie lepsze parametry mechaniczne w porównaniu z czystymi polimerami.
EN
Nanotechnology generally bases on modification of materials' behaviour. One of the first real products of nanotechnology is polymer nanocomposites, which are a combination of polymer matrix and nanoparticles (so called nanofillers) that have at least one dimension in a nanometric range. The nanofillers such as nanopowders, nanofibers, or nanotubes modify the polymer matrix on a molecular level. Properties of such materials depend both, on the matrix, and the nanoparticles. These materials may exhibit enhanced mechanical (tensile strength, stiffness, toughness), gas barrier, thermal expansion, thermal conductivity, ablation resistance, optical properties, chemical properties, electronic and magnetic properties. Polymer nanocomposites is a promising class of hybrid materials derived from both synthetic and natural polymers and inorganic/organic nanoparticles. The introduction of nanoparticles into a polymer matrix ensures significant improvement of the material's properties. Polymer nanocomposites are of immense interest of such biomedical technologies as; tissue engineering, bone replacement, dental applications and controlled drug delivery. Current opportunities for application of polymer nanocomposites in biomedical applications arise from their tailored bioactivity, biodegrabilty, and mechanical properties. Interaction between nanofillers and a polymer matrix enables them to act as molecular bridges in the polymer structure. High adhesion of nanoparticles to the polymer matrix results in the enhanced strength and Young's modulus of the nanocomposites comparing to conventional composites. The paper presents results of our investigations on three kinds of nanocomposites basing on biocompatible polymer matrices and nanoparticles such as; MMT, SiO2 and CNTs which constitute temporary replacing materials in a missing bone tissue. Such material should be biocompatible, osteoinductive, osteoconductive and porous as well as mechanically compatible with the bone tissue. The results of biological investigations provided evidence of good adhesion, proliferation and morphology of osteoblastic cells on the surface of each polymer nanocomposites. The ability of the polymer nanocomposite to cell attachment, spreading and growth in in vitro conditions, combined with the good mechanical properties suggest potential use of these material as biomedical devices, particularly in the area of regenerative medicine. Values of Young's modulus increase in all nanocomposites, and their tensile strength depends on dispersion of the nanoparticles in the polymer matrix, and in most cases decrease because of agglomeration of the nanoparticles. Polymer nanocomposite containing bioactive nanoprticles shows osteoinductive properties. Treatment of the nanocomposite samples in the simulated body fluid (SBF) induced some changes on the surface of the material containing bioactive ceramic nanoparticles. The results of the tests with SBF show that the material is able to produce apatite structure on its surface.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.