Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A well established technique toward developing the proof theory of a Hilbert-style modal logic is to introduce a Gentzen-style equivalent (a Gentzenisation), then develop the proof theory of the latter, and finally transfer the metatheoretical results to the original logic (e.g., [1, 6, 8, 18, 10, 12]). In the first-order modal case, on one hand we know that the Gentzenisation of the straightforward first-order extension of GL, the logic QGL, admits no cut elimination (if the rule is included as primitive; or, if not included, then the rule is not admissible [1]). On the other hand the (cut-free) Gentzenisations of the first-order modal logics M3 and ML3 of [10, 12] do have cut as an admissible rule. The syntactic cut admissibility proof given in [18] for the Gentzenisation of the propositional provability logic GL is extremely complex, and it was the basis of the proofs of cut admissibility of the Gentzenisations of M3 and ML3, where the presence of quantifiers and quantifier rules added to the complexity and length of the proof. A recent proof of cut admissibility in a cut-free Gentzenisation of GL is given in [5] and is quite short and easy to read. We adapt it here to revisit the proofs for the cases of M3 and ML3, resulting to similarly short and easy to read proofs, only slightly complicated by the presence of quantification and its relevant rules.
EN
We introduce a first order extension of GL, called ML3, and develop its proof theory via a proxy cut-free sequent calculus GLTS. We prove the highly nontrivial result that cut is a derived rule in GLTS, a result that is unavailable in other known first-order extensions of GL. This leads to proofs of weak reflection and the related conservation result for ML3, as well as proofs for Craig’s interpolation theorem for GLTS. Turning to semantics we prove that ML3 is sound with respect to arithmetical interpretations and that it is also sound and complete with respect to converse well-founded and transitive finite Kripke models. This leads us to expect that a Solovay-like proof of arithmetical completeness of ML3 is possible.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.