Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
EN
Currently, it is possible to collect large amount of data from sensors. At the same time, data are often only partially labeled. For example, in the context of smartphone-based monitoring of mental state, there are much more data collected from smartphones than those collected from psychiatrists about the mental state. The approach presented in this paper is designed to examine if unlabeled data can improve the accuracy of classification task in the considered case study of classifying a patient's state.First, unlabeled data are represented by clusters membership through Fuzzy C-means algorithm which corresponds to the uncertainty of the patient's condition in this disease. Secondly, the classification is perform using two well-known algorithms, Random Forest and SVM. The obtained results indicate a minimal improvement in the quality of classification thanks to the use of membership in clusters. These results are promising and also interpretable.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.