Optimization of cooling systems is of major importance due to the economy of cooling water and energy in thermal installations in the industry. The hydrodynamic study of the film is a prerequisite for the study of the intensity of the heat transfer during the cooling of a horizontal plate by a liquid film. This experimental work made it possible to quantify the hydrodynamic parameters by a new approach, a relation linking the thickness of the film to the velocity was found as a function of the geometrical and hydrodynamic characteristics of the sprayer. A new statistical approach has been developed for the measurement of the velocity, the liquid fluid arriving at the edge of the plate and having velocity V is spilled out like a projectile. The recovering of the liquid in tubes allowed us to quantify flow rates for different heights positions relative to the plate, statistical processing permitted us to assess the probable velocity with a margin of error.
Boiling produces vapor with a phase change by absorbing a consistent amount of heat. Experimentation and modeling can help us better understand this phenomenon. The present study is focused on the heat transfer during the nucleate pool boiling of refrigerant R141b on the surface of a horizontal copper tube. The results of the experiment were compared with four correlations drawn from the literature, and the critical heat flux was examined for different pressures and also compared with the predicted values. Simulating boiling with two-phase models allowed us to infer the plot of the temperature distribution around the tube and compared it to results from other work.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.