Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Progress in combinatorial chemistry is largely determined by development of specific synthetic organic chemistry tools such as solid supports, linkers, polymer supported reactions and methods of analysis, screening and deconvolution of combinatorial libraries. This review article presents basic terms related to polymer supported synthesis, enumerates major advantages of supported reactions, and gives a comprehensive, up to date, overview of support matrices used for immobilization of small and large molecules. The review covers the literature up to September 2002. The supports reviewed include (i) polymeric gels (Merrifield gel, TentaGel, ArgoGelTM, JandaJelTM, PEGA, PEG-PS, PEG-POP, SPOCC, PS-TTEGDA, CLEAR, DendroGel, Pepsyn, and Sucholeiki paramagnetic gel), (ii) soluble polymers (LPS, PEG, ROMP-polymer, PAMAM-dendrymer, Boltron), (iii) macroporous supports (CPG, Pepsyn K, PolyHIPE, ArgoPoreTM) and other developments including SMART reactors, MicroTubeTM, membranes, pins, and cellulose. For most of the supports reviewed basic characteristics such as swelling in different solvents, solvent usability, typical loading, typical anchoring groups, preparation, and recent applications are given or cited. The reviewed literature suggests that the supports most often used for synthesis of small molecules and peptides are based on gel matrices. The variety of available supports, many of which were introduced in the last years, shows that this area of synthetic methodology may grow dynamically in the future.
4
Content available remote Narzędzia chemii kombinatorycznej. Cz. 4. Synteza asymetryczna na fazie stałej
80%
EN
Solid Phase Asymmetric Synthesis (SPOS) is a recently introduced term embracing all methods of asymmetric synthesis involving use of solid supported substrates and reagents. This review presents basic definitions of asymmetric synthesis and currently used concepts for enatioselective and diastereoselective transformations involving supported synthesis. The concepts of chiral auxiliary, chiral catalyst and chiral reagent are illustrated with selected but fairly comprehensive overview of methods published till January 2005. In particular use of chiral auxiliaries such as oxazolidine derivatives, amines, hydrazines, sulfoxides, sulfinyl amides, sulfoxy imines, carbohydrates and alcohols is covered. Applications of immobilized chiral catalysts to synthesis of carbon-carbon bonds, carbon-hydrogen bonds, carbon--heteroatom bonds and in phase-transfer catalysis is presented with selected reactions due to huge volume of literature in this field. Moreover applications of chiral catalysts and chiral reagents in reactions of immobilized substrates and use of chiral immobilized reagents is also reviewed. The literature review shows that the most popular methods of supported asymmetric synthesis are the alkylation of enolates, aldol reactions, Grignard reactions, cycloadditions, reduetion of ketones, epoxida-tions, olefin dihydroxylation, and phase-transfer catalyzed reactions. There are numerous applications of immobilized chiral catalysts and a substantial number of applications of immobilized chiral auxiliaries. On the other hand there are only scarce reports of applications of chiral reagents and chiral catalysts to the reactions of achiral immobilized substrates.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.