Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Design and performance parameters of shear walls: a review
100%
EN
Reinforced concrete (RC) walls are used in buildings to provide lateral stiffness and strength against lateral forces like earthquake, wind etc. Shear walls are one of the most important lateral load-resisting systems in high-rise buildings. This paper provides an overview of not only reinforced concrete (RC), but also composite shear walls. The paper focuses on four inter-related review areas, namely i) conventional shear walls with rectangular cross section, ii) coupled shear walls, iii) composite shear walls, and iv) shear walls with opening(s). Behavior of shear walls which are the most damaged structural elements during earthquake and the parameters affecting this behavior are evaluated in this paper. However, this paper presents the available information about the design and performance parameters of shear walls.
EN
The boron active belite cement is a cement type different from the Portland Cement due to the presence of B2O3 at 3-4%. The prominent properties are low hydration temperature, low early strength, and high final strength for the boron active belite cement concrete. The aim of this study is to observe self-compacting concrete properties, which includes boron active belite cement and silica fume, at the high temperatures. Withal, the cement types were decided as CEM I, CEM II, and boron active belite cement. Some mechanical and durability properties of manufactured samples were also investigated, experimentally. The samples were designed for 0.35 water/binder ratio and 2% hyper plasticizer, while the silica fume is replaced 7.5% for cement. Some rheological properties of self-compacting concrete, such as the experiments of flow diameter, flow time (t50), V-flow time, L-box and J-ring were observed at fresh stage. As high temperature related parameters, the samples were planned to be tested for 100, 200, 300, 400, 600 and 750°C, to acquire the compressive strength, tensile splitting strength, ultrasonic pulse velocity, and the unit weight. All the samples met the mentioned relevant criteria of self-compacting concrete. Withal, the presence of the boron active belite cement was enhanced by the flowability of the fresh concrete. The long time resulting compressive and splitting tensile strengths of the samples, which were produced with boron active belite cement implied greater values, then the CEM I and CEM II ones. The increasing high-temperature, decreased the strengths for all samples, and weight loss for the boron active belite cement used samples.
3
80%
EN
The modern basic civil engineering concept is to design simplistic structures, by using innovative brand new manufacturing and assemblage concepts. As a result of this concept, arch type steel plates are used like the corrugated coatings. The main purpose of this work is to describe the Roll Form Machine (RFM) technology as used for the structures, especially for the roofs. Cold formed arch type steel structures may be fast and simple. These types of structures were used for temporary buildings in the US Army. Nowadays, this technology becomes popular and gets in consideration for civil life. However, the design concept of this technology does not have a theoretical model, and the calculations are evaluated according to the United States Standards. The uniaxial compressive behaviors of corrugated arch type steel members are observed, experimentally within this work.
4
Content available remote Dent-to-stiffener evaluation concept for thin-walled steel cylinders
70%
EN
Defects/imperfections can occur during manufacturing, assembly, welding, and other processes, which can reduce the critical buckling load. However, the axial buckling load is beyond the scope of this work, and there are many studies on the stiffening effect of longitudinal dents. This concept combined the idea of the dent-to-stiffener evaluation concept for thin-walled steel cylinders. This study aims to transform the dents into artificial dents for a stiffening effect on the buckling phenomena. For this purpose, 37 thin-walled steel cylinder models, including the perfect model, were designed for varying dent shapes, dent widths, dent depths, dent lengths, and dent angles. The study also contributed to the effect of dent parameters on the critical buckling load of thin-walled steel cylinders. In particular, increasing the initial buckling will motivate the industry to convert dents into stiffeners with small artificial touches to enhance the longevity of the structure. The results showed that the introduction of certain artificial dents can significantly increase the critical buckling load of cylinders, thus improving their resistance against buckling, which has significant implications for various industries that use thin-walled steel cylinders in their structures. The proposed simulations for transforming dents into artificial stiffeners can be a valuable tool for enhancing the longevity and safety of thin-walled steel cylinders and other structures.
5
Content available remote The torsional and shear behavior of steel fiber reinforced RC members
70%
EN
Beams and columns are one of the important structural elements of buildings to take up transverse loads such as axial load, bending moment, shear, and torsion. Present work is an experimental investigation on the shear, torsion, and axial load behavior of the structural members like columns and/or beams. The reinforced concrete members with 0, 30, and 60 kg/m3 of steel fibers were tested for torsion, shear and axial loading for this study. The twist angle, the load-deflection behavior, the ultimate shear strength, the torsional moment, and the critical moments were obtained for the loading type and steel fiber ratios. The results show that the increasing steel fiber ratio, increased the torsional moment capacity and decreased the shear strength capacity. On the other hand, increasing the steel fiber content increased the both axial load and moment capacity of RC columns. The shear strength and the torsional moment capacities are defined by the provision of current codes of practice such as ACI318-19, Eurocode-2, British, Australian and Turkish Standards.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.